ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS:
This book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas. The authors summarize and present the systematic derivations and complete research of ZT...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
CRC PRESS
2024
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781040091623/?ar |
Zusammenfassung: | This book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas. The authors summarize and present the systematic derivations and complete research of ZTD formulas from special 3S-ZTD formulas to general NS-ZTD formulas. These finally lead to their proposed discrete-time Zhang neural network (DTZNN) algorithms, which are more efficient, accurate, and elegant. This book will open the door to scientific and engineering applications of ZTD formulas and neural networks, and will be a major inspiration for studies in neural network modeling, numerical algorithm design, prediction, and robot manipulator control. The book will benefit engineers, senior undergraduates, graduate students, and researchers in the fields of neural networks, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, robotics, and simulation modeling. |
Umfang: | 1 Online-Ressource |
ISBN: | 9781040091616 104009161X 9781003497783 1003497780 9781040091623 1040091628 |
Internformat
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-11015780X | ||
003 | DE-627-1 | ||
005 | 20241202095348.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241202s2024 xx |||||o 00| ||eng c | ||
020 | |a 9781040091616 |c electronic bk. |9 978-1-040-09161-6 | ||
020 | |a 104009161X |c electronic bk. |9 1-040-09161-X | ||
020 | |a 9781003497783 |c electronic bk. |9 978-1-003-49778-3 | ||
020 | |a 1003497780 |c electronic bk. |9 1-003-49778-0 | ||
020 | |a 9781040091623 |c electronic bk. : EPUB |9 978-1-040-09162-3 | ||
020 | |a 1040091628 |c electronic bk. : EPUB |9 1-040-09162-8 | ||
035 | |a (DE-627-1)11015780X | ||
035 | |a (DE-599)KEP11015780X | ||
035 | |a (ORHE)9781040091623 | ||
035 | |a (DE-627-1)11015780X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a UYQ |2 bicssc | |
082 | 0 | |a 006.3/2 |2 23/eng/20240719 | |
100 | 1 | |a Zhang, Yunong |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS |
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b CRC PRESS |c 2024 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas. The authors summarize and present the systematic derivations and complete research of ZTD formulas from special 3S-ZTD formulas to general NS-ZTD formulas. These finally lead to their proposed discrete-time Zhang neural network (DTZNN) algorithms, which are more efficient, accurate, and elegant. This book will open the door to scientific and engineering applications of ZTD formulas and neural networks, and will be a major inspiration for studies in neural network modeling, numerical algorithm design, prediction, and robot manipulator control. The book will benefit engineers, senior undergraduates, graduate students, and researchers in the fields of neural networks, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, robotics, and simulation modeling. | ||
650 | 0 | |a Neural networks (Computer science) | |
650 | 4 | |a COMPUTERS / Artificial Intelligence | |
650 | 4 | |a COMPUTERS / Programming / Algorithms | |
650 | 4 | |a COMPUTERS / Computer Simulation | |
700 | 1 | |a Guo, Jinjin |e MitwirkendeR |4 ctb | |
776 | 1 | |z 1032806249 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1032806249 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781040091623/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-11015780X |
---|---|
_version_ | 1821494924260933632 |
adam_text | |
any_adam_object | |
author | Zhang, Yunong |
author2 | Guo, Jinjin |
author2_role | ctb |
author2_variant | j g jg |
author_facet | Zhang, Yunong Guo, Jinjin |
author_role | aut |
author_sort | Zhang, Yunong |
author_variant | y z yz |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)11015780X (DE-599)KEP11015780X (ORHE)9781040091623 |
dewey-full | 006.3/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/2 |
dewey-search | 006.3/2 |
dewey-sort | 16.3 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02819nam a22005052 4500</leader><controlfield tag="001">ZDB-30-ORH-11015780X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241202095348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241202s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781040091616</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-040-09161-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">104009161X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-040-09161-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003497783</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-003-49778-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1003497780</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-003-49778-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781040091623</subfield><subfield code="c">electronic bk. : EPUB</subfield><subfield code="9">978-1-040-09162-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1040091628</subfield><subfield code="c">electronic bk. : EPUB</subfield><subfield code="9">1-040-09162-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)11015780X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP11015780X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781040091623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)11015780X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield><subfield code="2">23/eng/20240719</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yunong</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">CRC PRESS</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas. The authors summarize and present the systematic derivations and complete research of ZTD formulas from special 3S-ZTD formulas to general NS-ZTD formulas. These finally lead to their proposed discrete-time Zhang neural network (DTZNN) algorithms, which are more efficient, accurate, and elegant. This book will open the door to scientific and engineering applications of ZTD formulas and neural networks, and will be a major inspiration for studies in neural network modeling, numerical algorithm design, prediction, and robot manipulator control. The book will benefit engineers, senior undergraduates, graduate students, and researchers in the fields of neural networks, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, robotics, and simulation modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS / Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS / Programming / Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS / Computer Simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Jinjin</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1032806249</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1032806249</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781040091623/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-11015780X |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:06Z |
institution | BVB |
isbn | 9781040091616 104009161X 9781003497783 1003497780 9781040091623 1040091628 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | CRC PRESS |
record_format | marc |
spelling | Zhang, Yunong VerfasserIn aut ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS [Erscheinungsort nicht ermittelbar] CRC PRESS 2024 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas. The authors summarize and present the systematic derivations and complete research of ZTD formulas from special 3S-ZTD formulas to general NS-ZTD formulas. These finally lead to their proposed discrete-time Zhang neural network (DTZNN) algorithms, which are more efficient, accurate, and elegant. This book will open the door to scientific and engineering applications of ZTD formulas and neural networks, and will be a major inspiration for studies in neural network modeling, numerical algorithm design, prediction, and robot manipulator control. The book will benefit engineers, senior undergraduates, graduate students, and researchers in the fields of neural networks, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, robotics, and simulation modeling. Neural networks (Computer science) COMPUTERS / Artificial Intelligence COMPUTERS / Programming / Algorithms COMPUTERS / Computer Simulation Guo, Jinjin MitwirkendeR ctb 1032806249 Erscheint auch als Druck-Ausgabe 1032806249 |
spellingShingle | Zhang, Yunong ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS Neural networks (Computer science) COMPUTERS / Artificial Intelligence COMPUTERS / Programming / Algorithms COMPUTERS / Computer Simulation |
title | ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS |
title_auth | ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS |
title_exact_search | ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS |
title_full | ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS |
title_fullStr | ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS |
title_full_unstemmed | ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS |
title_short | ZHANG TIME DISCRETIZATION (ZTD) FORMULAS AND APPLICATIONS |
title_sort | zhang time discretization ztd formulas and applications |
topic | Neural networks (Computer science) COMPUTERS / Artificial Intelligence COMPUTERS / Programming / Algorithms COMPUTERS / Computer Simulation |
topic_facet | Neural networks (Computer science) COMPUTERS / Artificial Intelligence COMPUTERS / Programming / Algorithms COMPUTERS / Computer Simulation |
work_keys_str_mv | AT zhangyunong zhangtimediscretizationztdformulasandapplications AT guojinjin zhangtimediscretizationztdformulasandapplications |