Data mining for business analytics: concepts, techniques and applications in Python
"This book supplies insightful, detailed guidance on fundamental data mining techniques. The book guides readers through the use of Python software for developing predictive models and techniques in order to describe and find patterns in data. The authors use interesting, real-world examples to...
Gespeichert in:
Beteiligte Personen: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken, NJ
John Wiley & Sons, Inc.
2020
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781119549840/?ar |
Zusammenfassung: | "This book supplies insightful, detailed guidance on fundamental data mining techniques. The book guides readers through the use of Python software for developing predictive models and techniques in order to describe and find patterns in data. The authors use interesting, real-world examples to build a theoretical and practical understanding of key data mining methods, with a focus on analytics rather than programming. The book includes discussions of Python subroutines, allowing readers to work hands-on with the provided data. Throughout the book, applications of the discussed topics focus on the business problem as motivation and avoid unnecessary statistical theory. Topics covered include time series, text mining, and dimension reduction. Each chapter concludes with exercises that allow readers to expand their comprehension of the presented material. Over a dozen cases that require use of the different data mining techniques are introduced, and a related Web site features over two dozen data sets, exercise solutions, PowerPoint slides, and case solutions"-- |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from digital title page (viewed on April 29, 2020) |
Umfang: | 1 Online-Ressource (xxix, 574 Seiten) illustrations (some color), color maps |
ISBN: | 9781119549864 1119549868 9781119549857 111954985X 9781119549840 |
Internformat
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-108526909 | ||
003 | DE-627-1 | ||
005 | 20241001123225.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241001s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781119549864 |c electronic book |9 978-1-119-54986-4 | ||
020 | |a 1119549868 |c electronic book |9 1-119-54986-8 | ||
020 | |a 9781119549857 |c electronic book |9 978-1-119-54985-7 | ||
020 | |a 111954985X |c electronic book |9 1-119-54985-X | ||
020 | |a 9781119549840 |9 978-1-119-54984-0 | ||
035 | |a (DE-627-1)108526909 | ||
035 | |a (DE-599)KEP108526909 | ||
035 | |a (ORHE)9781119549840 | ||
035 | |a (DE-627-1)108526909 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 650.072/7 |2 23 | |
100 | 1 | |a Shmueli, Galit |d 1971- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Data mining for business analytics |b concepts, techniques and applications in Python |c Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons, Inc. |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (xxix, 574 Seiten) |b illustrations (some color), color maps | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from digital title page (viewed on April 29, 2020) | ||
520 | |a "This book supplies insightful, detailed guidance on fundamental data mining techniques. The book guides readers through the use of Python software for developing predictive models and techniques in order to describe and find patterns in data. The authors use interesting, real-world examples to build a theoretical and practical understanding of key data mining methods, with a focus on analytics rather than programming. The book includes discussions of Python subroutines, allowing readers to work hands-on with the provided data. Throughout the book, applications of the discussed topics focus on the business problem as motivation and avoid unnecessary statistical theory. Topics covered include time series, text mining, and dimension reduction. Each chapter concludes with exercises that allow readers to expand their comprehension of the presented material. Over a dozen cases that require use of the different data mining techniques are introduced, and a related Web site features over two dozen data sets, exercise solutions, PowerPoint slides, and case solutions"-- | ||
650 | 0 | |a Business mathematics |x Computer programs | |
650 | 0 | |a Business |x Data processing | |
650 | 0 | |a Data mining | |
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Management |x Data processing | |
650 | 4 | |a Gestion ; Informatique | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a MATHEMATICS ; Probability & Statistics ; General | |
650 | 4 | |a Management ; Data processing | |
650 | 4 | |a Business ; Data processing | |
650 | 4 | |a Business mathematics ; Computer programs | |
650 | 4 | |a Data mining | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Bruce, Peter C. |d 1953- |e VerfasserIn |4 aut | |
700 | 1 | |a Gedeck, Peter |e VerfasserIn |4 aut | |
700 | 1 | |a Patel, Nitin R. |e VerfasserIn |4 aut | |
776 | 1 | |z 9781119549840 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781119549840 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781119549840/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-108526909 |
---|---|
_version_ | 1821494926972551168 |
adam_text | |
any_adam_object | |
author | Shmueli, Galit 1971- Bruce, Peter C. 1953- Gedeck, Peter Patel, Nitin R. |
author_facet | Shmueli, Galit 1971- Bruce, Peter C. 1953- Gedeck, Peter Patel, Nitin R. |
author_role | aut aut aut aut |
author_sort | Shmueli, Galit 1971- |
author_variant | g s gs p c b pc pcb p g pg n r p nr nrp |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)108526909 (DE-599)KEP108526909 (ORHE)9781119549840 |
dewey-full | 650.072/7 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 650 - Management and auxiliary services |
dewey-raw | 650.072/7 |
dewey-search | 650.072/7 |
dewey-sort | 3650.072 17 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03535nam a22006132 4500</leader><controlfield tag="001">ZDB-30-ORH-108526909</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241001123225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241001s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119549864</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-119-54986-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119549868</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-119-54986-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119549857</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-119-54985-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111954985X</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-119-54985-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119549840</subfield><subfield code="9">978-1-119-54984-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)108526909</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP108526909</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781119549840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)108526909</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">650.072/7</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shmueli, Galit</subfield><subfield code="d">1971-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining for business analytics</subfield><subfield code="b">concepts, techniques and applications in Python</subfield><subfield code="c">Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons, Inc.</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxix, 574 Seiten)</subfield><subfield code="b">illustrations (some color), color maps</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from digital title page (viewed on April 29, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book supplies insightful, detailed guidance on fundamental data mining techniques. The book guides readers through the use of Python software for developing predictive models and techniques in order to describe and find patterns in data. The authors use interesting, real-world examples to build a theoretical and practical understanding of key data mining methods, with a focus on analytics rather than programming. The book includes discussions of Python subroutines, allowing readers to work hands-on with the provided data. Throughout the book, applications of the discussed topics focus on the business problem as motivation and avoid unnecessary statistical theory. Topics covered include time series, text mining, and dimension reduction. Each chapter concludes with exercises that allow readers to expand their comprehension of the presented material. Over a dozen cases that require use of the different data mining techniques are introduced, and a related Web site features over two dozen data sets, exercise solutions, PowerPoint slides, and case solutions"--</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business mathematics</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Management</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gestion ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Probability & Statistics ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business mathematics ; Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruce, Peter C.</subfield><subfield code="d">1953-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gedeck, Peter</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, Nitin R.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781119549840</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781119549840</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781119549840/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-108526909 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:22:09Z |
institution | BVB |
isbn | 9781119549864 1119549868 9781119549857 111954985X 9781119549840 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxix, 574 Seiten) illustrations (some color), color maps |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | John Wiley & Sons, Inc. |
record_format | marc |
spelling | Shmueli, Galit 1971- VerfasserIn aut Data mining for business analytics concepts, techniques and applications in Python Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel Hoboken, NJ John Wiley & Sons, Inc. 2020 ©2020 1 Online-Ressource (xxix, 574 Seiten) illustrations (some color), color maps Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from digital title page (viewed on April 29, 2020) "This book supplies insightful, detailed guidance on fundamental data mining techniques. The book guides readers through the use of Python software for developing predictive models and techniques in order to describe and find patterns in data. The authors use interesting, real-world examples to build a theoretical and practical understanding of key data mining methods, with a focus on analytics rather than programming. The book includes discussions of Python subroutines, allowing readers to work hands-on with the provided data. Throughout the book, applications of the discussed topics focus on the business problem as motivation and avoid unnecessary statistical theory. Topics covered include time series, text mining, and dimension reduction. Each chapter concludes with exercises that allow readers to expand their comprehension of the presented material. Over a dozen cases that require use of the different data mining techniques are introduced, and a related Web site features over two dozen data sets, exercise solutions, PowerPoint slides, and case solutions"-- Business mathematics Computer programs Business Data processing Data mining Python (Computer program language) Management Data processing Gestion ; Informatique Exploration de données (Informatique) Python (Langage de programmation) MATHEMATICS ; Probability & Statistics ; General Management ; Data processing Business ; Data processing Business mathematics ; Computer programs Bruce, Peter C. 1953- VerfasserIn aut Gedeck, Peter VerfasserIn aut Patel, Nitin R. VerfasserIn aut 9781119549840 Erscheint auch als Druck-Ausgabe 9781119549840 |
spellingShingle | Shmueli, Galit 1971- Bruce, Peter C. 1953- Gedeck, Peter Patel, Nitin R. Data mining for business analytics concepts, techniques and applications in Python Business mathematics Computer programs Business Data processing Data mining Python (Computer program language) Management Data processing Gestion ; Informatique Exploration de données (Informatique) Python (Langage de programmation) MATHEMATICS ; Probability & Statistics ; General Management ; Data processing Business ; Data processing Business mathematics ; Computer programs |
title | Data mining for business analytics concepts, techniques and applications in Python |
title_auth | Data mining for business analytics concepts, techniques and applications in Python |
title_exact_search | Data mining for business analytics concepts, techniques and applications in Python |
title_full | Data mining for business analytics concepts, techniques and applications in Python Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel |
title_fullStr | Data mining for business analytics concepts, techniques and applications in Python Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel |
title_full_unstemmed | Data mining for business analytics concepts, techniques and applications in Python Galit Shmueli, Peter C. Bruce, Peter Gedeck, Nitin R. Patel |
title_short | Data mining for business analytics |
title_sort | data mining for business analytics concepts techniques and applications in python |
title_sub | concepts, techniques and applications in Python |
topic | Business mathematics Computer programs Business Data processing Data mining Python (Computer program language) Management Data processing Gestion ; Informatique Exploration de données (Informatique) Python (Langage de programmation) MATHEMATICS ; Probability & Statistics ; General Management ; Data processing Business ; Data processing Business mathematics ; Computer programs |
topic_facet | Business mathematics Computer programs Business Data processing Data mining Python (Computer program language) Management Data processing Gestion ; Informatique Exploration de données (Informatique) Python (Langage de programmation) MATHEMATICS ; Probability & Statistics ; General Management ; Data processing Business ; Data processing Business mathematics ; Computer programs |
work_keys_str_mv | AT shmueligalit dataminingforbusinessanalyticsconceptstechniquesandapplicationsinpython AT brucepeterc dataminingforbusinessanalyticsconceptstechniquesandapplicationsinpython AT gedeckpeter dataminingforbusinessanalyticsconceptstechniquesandapplicationsinpython AT patelnitinr dataminingforbusinessanalyticsconceptstechniquesandapplicationsinpython |