Evolutionary algorithms for food science and technology:

Researchers and practitioners in food science and technology routinely face several challenges, related to sparseness and heterogeneity of data, as well as to the uncertainty in the measurements and the introduction of expert knowledge in the models. Evolutionary algorithms (EAs), stochastic optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Lutton, Evelyne (VerfasserIn)
Weitere beteiligte Personen: Perrot, Nathalie (MitwirkendeR), Tonda, Alberto (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: London, UK Hoboken, NJ ISTE, Ltd. ; 2016
London, UK Hoboken, NJ Wiley 2016
Schriftenreihe:Metaheuristics set v. 7
Schlagwörter:
Links:https://learning.oreilly.com/library/view/-/9781848218130/?ar
Zusammenfassung:Researchers and practitioners in food science and technology routinely face several challenges, related to sparseness and heterogeneity of data, as well as to the uncertainty in the measurements and the introduction of expert knowledge in the models. Evolutionary algorithms (EAs), stochastic optimization techniques loosely inspired by natural selection, can be effectively used to tackle these issues. In this book, we present a selection of case studies where EAs are adopted in real-world food applications, ranging from model learning to sensitivity analysis.
Beschreibung:Includes bibliographical references and index. - Print version record
Umfang:1 Online-Ressource (200 Seiten)
ISBN:9781119136828
1119136822
1119136849
9781119136842
1848218133
9781848218130