Understanding large temporal networks and spatial networks: exploration, pattern searching, visualization and network evolution
"This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns. This text identifies the social processes generating these networks and how networks have evolved"--
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken
Wiley
2014
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781118915356/?ar |
Zusammenfassung: | "This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns. This text identifies the social processes generating these networks and how networks have evolved"-- "This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns"-- |
Beschreibung: | Machine generated contents note: Dedication Preface 1 Temporal and spatial networks 1.1 Modern social network analysis 1.2 Network sizes 1.3 Substantive concerns 1.4 Computational methods 1.5 Data for large temporal networks 1.6 Induction and deduction 2 Foundations of methods for large networks 2.1 Networks 2.2 Types of networks 2.3 Large networks 2.4 Strategies for analyzing large networks 2.5 Statistical network measures 2.6 Subnetworks 2.7 Connectivity properties of networks 2.8 Triangular and short cycle connectivities 2.9 Islands 2.10 Cores and generalized cores 2.11 Important vertices in networks 2.12 Transition to methods for large networks 3 Methods for large networks 3.1 Acyclic networks 3.2 SPC weights in acyclic networks 3.3 Probabilistic flow in acyclic network 3.4 Nonacyclic citation networks 3.5 Two-mode networks from data tables 3.6 Bibliographic networks 3.7 Weights 3.8 Pathfinder 3.9 Clustering, blockmodeling and community detection 3.10 Clustering symbolic data 3.11 Approaches to temporal networks 3.12 Levels of analysis 3.13 Transition to substantive part 4 Scientific citation and other bibliographic networks 4.1 The centrality citation network 4.2 Preliminary data analyses 4.3 Transforming a citation network into an acyclic network 4.4 The most important works 4.5 SPC weights 4.6 Line cuts 4.7 Line islands 4.8 Other relevant subnetworks for a bounded network 4.9 Collaboration networks 4.10 A brief look at the SNA literature SN5 networks 4.11 On the centrality and SNA collaboration networks 5 Citation patterns in a United States patent data 5.1 Patents 5.2 Supreme Court decisions regarding patents 5.3 The 1976-2006 patent data 5.4 Structural Variables through Time 5.5 Some patterns of technological development 5.6 Important Sub Networks 5.7 Citation Patterns 5.8 Comparing citation patterns for two time intervals 5.9 Summary and conclusions 6 The US Supreme Court Citation Network 6.1 Introduction 6.2 Cocited islands of Supreme Court decisions 6.3 A Native American Line Island 6.4 A 'Perceived Threats to Social Order' line island 6.5 Other perceived threats 6.6 The Dred Scott Decision 6.7 Further reflections on the Supreme Court citation network 7 Football as the world's game 7.1 A brief historical overview 7.2 Football clubs 7.3 Football players 7.4 Football in England 7.5 Player migrations 7.6 Institutional arrangements and the organization of football 7.7 Court rulings 7.8 Specific factors impacting football migration 7.9 Some arguments and propositions 7.10 Some preliminary results 7.11 Player ages when recruited to the EPL 7.12 A partial summary of results 8 Networks of player movements to the EPL 8.1 Success in the EPL 8.2 The overall presence of other countries in the EPL 8.3 Network flows of footballers between clubs to reach the EPL 8.4 Moves from EPL clubs 8.5 Moves solely within the EPL 8.6 All trails of footballers to the EPL 8.7 Summary and conclusions 9 Mapping Spatial Diversity in the United States of America 9.1 Mapping Nations as Spatial Units of the United States 9.2 Representing networks in space 9.3 Clustering with a relational constraint 9.4 Data for constrained spatial clustering 9.5 Clustering the US counties with a spatial relational constraint 9.6 Summary 10 On studying large networks 10.1 Substance 10.2 Methods, techniques and algorithms 10.3 Network data 10.4 Surprises and issues triggered by them 10.5 Future work 10.6 Two final comments Appendix: Data Documentation A.1 Bibliographic networks A.2 Patent data A.3 Supreme Court data A.4 Football Data A.5 The USA spatial county network References Person index Subject index. - Includes bibliographical references and index. - Print version record and CIP data provided by publisher; resource not viewed |
Umfang: | 1 Online-Ressource (xiv, 450 Seiten) |
ISBN: | 9781118915370 1118915372 9781118915363 1118915364 9781118915356 |
Internformat
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-108522326 | ||
003 | DE-627-1 | ||
005 | 20241001123219.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241001s2014 xx |||||o 00| ||eng c | ||
020 | |a 9781118915370 |c electronic bk. |9 978-1-118-91537-0 | ||
020 | |a 1118915372 |c electronic bk. |9 1-118-91537-2 | ||
020 | |a 9781118915363 |c electronic bk. |9 978-1-118-91536-3 | ||
020 | |a 1118915364 |c electronic bk. |9 1-118-91536-4 | ||
020 | |a 9781118915356 |9 978-1-118-91535-6 | ||
035 | |a (DE-627-1)108522326 | ||
035 | |a (DE-599)KEP108522326 | ||
035 | |a (ORHE)9781118915356 | ||
035 | |a (DE-627-1)108522326 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a PSY |2 bisacsh | |
082 | 0 | |a 302.3 |2 23 | |
100 | 1 | |a Batagelj, Vladimir |d 1948- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Understanding large temporal networks and spatial networks |b exploration, pattern searching, visualization and network evolution |c Vladimir Batagelj, Patrick Doreian, Anuska Ferligo, Natasa Kejzar |
263 | |a 1411 | ||
264 | 1 | |a Hoboken |b Wiley |c 2014 | |
300 | |a 1 Online-Ressource (xiv, 450 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Machine generated contents note: Dedication Preface 1 Temporal and spatial networks 1.1 Modern social network analysis 1.2 Network sizes 1.3 Substantive concerns 1.4 Computational methods 1.5 Data for large temporal networks 1.6 Induction and deduction 2 Foundations of methods for large networks 2.1 Networks 2.2 Types of networks 2.3 Large networks 2.4 Strategies for analyzing large networks 2.5 Statistical network measures 2.6 Subnetworks 2.7 Connectivity properties of networks 2.8 Triangular and short cycle connectivities 2.9 Islands 2.10 Cores and generalized cores 2.11 Important vertices in networks 2.12 Transition to methods for large networks 3 Methods for large networks 3.1 Acyclic networks 3.2 SPC weights in acyclic networks 3.3 Probabilistic flow in acyclic network 3.4 Nonacyclic citation networks 3.5 Two-mode networks from data tables 3.6 Bibliographic networks 3.7 Weights 3.8 Pathfinder 3.9 Clustering, blockmodeling and community detection 3.10 Clustering symbolic data 3.11 Approaches to temporal networks 3.12 Levels of analysis 3.13 Transition to substantive part 4 Scientific citation and other bibliographic networks 4.1 The centrality citation network 4.2 Preliminary data analyses 4.3 Transforming a citation network into an acyclic network 4.4 The most important works 4.5 SPC weights 4.6 Line cuts 4.7 Line islands 4.8 Other relevant subnetworks for a bounded network 4.9 Collaboration networks 4.10 A brief look at the SNA literature SN5 networks 4.11 On the centrality and SNA collaboration networks 5 Citation patterns in a United States patent data 5.1 Patents 5.2 Supreme Court decisions regarding patents 5.3 The 1976-2006 patent data 5.4 Structural Variables through Time 5.5 Some patterns of technological development 5.6 Important Sub Networks 5.7 Citation Patterns 5.8 Comparing citation patterns for two time intervals 5.9 Summary and conclusions 6 The US Supreme Court Citation Network 6.1 Introduction 6.2 Cocited islands of Supreme Court decisions 6.3 A Native American Line Island 6.4 A 'Perceived Threats to Social Order' line island 6.5 Other perceived threats 6.6 The Dred Scott Decision 6.7 Further reflections on the Supreme Court citation network 7 Football as the world's game 7.1 A brief historical overview 7.2 Football clubs 7.3 Football players 7.4 Football in England 7.5 Player migrations 7.6 Institutional arrangements and the organization of football 7.7 Court rulings 7.8 Specific factors impacting football migration 7.9 Some arguments and propositions 7.10 Some preliminary results 7.11 Player ages when recruited to the EPL 7.12 A partial summary of results 8 Networks of player movements to the EPL 8.1 Success in the EPL 8.2 The overall presence of other countries in the EPL 8.3 Network flows of footballers between clubs to reach the EPL 8.4 Moves from EPL clubs 8.5 Moves solely within the EPL 8.6 All trails of footballers to the EPL 8.7 Summary and conclusions 9 Mapping Spatial Diversity in the United States of America 9.1 Mapping Nations as Spatial Units of the United States 9.2 Representing networks in space 9.3 Clustering with a relational constraint 9.4 Data for constrained spatial clustering 9.5 Clustering the US counties with a spatial relational constraint 9.6 Summary 10 On studying large networks 10.1 Substance 10.2 Methods, techniques and algorithms 10.3 Network data 10.4 Surprises and issues triggered by them 10.5 Future work 10.6 Two final comments Appendix: Data Documentation A.1 Bibliographic networks A.2 Patent data A.3 Supreme Court data A.4 Football Data A.5 The USA spatial county network References Person index Subject index. - Includes bibliographical references and index. - Print version record and CIP data provided by publisher; resource not viewed | ||
520 | |a "This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns. This text identifies the social processes generating these networks and how networks have evolved"-- | ||
520 | |a "This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns"-- | ||
650 | 0 | |a Social networks |x Mathematical models | |
650 | 0 | |a Social networks |x Computer simulation | |
650 | 4 | |a Réseaux sociaux ; Modèles mathématiques | |
650 | 4 | |a Réseaux sociaux ; Simulation par ordinateur | |
650 | 4 | |a MATHEMATICS ; Probability & Statistics ; General | |
650 | 4 | |a PSYCHOLOGY ; Social Psychology | |
650 | 4 | |a Social networks ; Mathematical models | |
650 | 4 | |a Llibres electrònics | |
776 | 1 | |z 9780470714522 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780470714522 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781118915356/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-108522326 |
---|---|
_version_ | 1821494927995961344 |
adam_text | |
any_adam_object | |
author | Batagelj, Vladimir 1948- |
author_facet | Batagelj, Vladimir 1948- |
author_role | aut |
author_sort | Batagelj, Vladimir 1948- |
author_variant | v b vb |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)108522326 (DE-599)KEP108522326 (ORHE)9781118915356 |
dewey-full | 302.3 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 302 - Social interaction |
dewey-raw | 302.3 |
dewey-search | 302.3 |
dewey-sort | 3302.3 |
dewey-tens | 300 - Social sciences |
discipline | Soziologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06152nam a22005292 4500</leader><controlfield tag="001">ZDB-30-ORH-108522326</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241001123219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241001s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118915370</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-118-91537-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118915372</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-118-91537-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118915363</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-118-91536-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118915364</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-118-91536-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118915356</subfield><subfield code="9">978-1-118-91535-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)108522326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP108522326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781118915356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)108522326</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PSY</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">302.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Batagelj, Vladimir</subfield><subfield code="d">1948-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding large temporal networks and spatial networks</subfield><subfield code="b">exploration, pattern searching, visualization and network evolution</subfield><subfield code="c">Vladimir Batagelj, Patrick Doreian, Anuska Ferligo, Natasa Kejzar</subfield></datafield><datafield tag="263" ind1=" " ind2=" "><subfield code="a">1411</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 450 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Machine generated contents note: Dedication Preface 1 Temporal and spatial networks 1.1 Modern social network analysis 1.2 Network sizes 1.3 Substantive concerns 1.4 Computational methods 1.5 Data for large temporal networks 1.6 Induction and deduction 2 Foundations of methods for large networks 2.1 Networks 2.2 Types of networks 2.3 Large networks 2.4 Strategies for analyzing large networks 2.5 Statistical network measures 2.6 Subnetworks 2.7 Connectivity properties of networks 2.8 Triangular and short cycle connectivities 2.9 Islands 2.10 Cores and generalized cores 2.11 Important vertices in networks 2.12 Transition to methods for large networks 3 Methods for large networks 3.1 Acyclic networks 3.2 SPC weights in acyclic networks 3.3 Probabilistic flow in acyclic network 3.4 Nonacyclic citation networks 3.5 Two-mode networks from data tables 3.6 Bibliographic networks 3.7 Weights 3.8 Pathfinder 3.9 Clustering, blockmodeling and community detection 3.10 Clustering symbolic data 3.11 Approaches to temporal networks 3.12 Levels of analysis 3.13 Transition to substantive part 4 Scientific citation and other bibliographic networks 4.1 The centrality citation network 4.2 Preliminary data analyses 4.3 Transforming a citation network into an acyclic network 4.4 The most important works 4.5 SPC weights 4.6 Line cuts 4.7 Line islands 4.8 Other relevant subnetworks for a bounded network 4.9 Collaboration networks 4.10 A brief look at the SNA literature SN5 networks 4.11 On the centrality and SNA collaboration networks 5 Citation patterns in a United States patent data 5.1 Patents 5.2 Supreme Court decisions regarding patents 5.3 The 1976-2006 patent data 5.4 Structural Variables through Time 5.5 Some patterns of technological development 5.6 Important Sub Networks 5.7 Citation Patterns 5.8 Comparing citation patterns for two time intervals 5.9 Summary and conclusions 6 The US Supreme Court Citation Network 6.1 Introduction 6.2 Cocited islands of Supreme Court decisions 6.3 A Native American Line Island 6.4 A 'Perceived Threats to Social Order' line island 6.5 Other perceived threats 6.6 The Dred Scott Decision 6.7 Further reflections on the Supreme Court citation network 7 Football as the world's game 7.1 A brief historical overview 7.2 Football clubs 7.3 Football players 7.4 Football in England 7.5 Player migrations 7.6 Institutional arrangements and the organization of football 7.7 Court rulings 7.8 Specific factors impacting football migration 7.9 Some arguments and propositions 7.10 Some preliminary results 7.11 Player ages when recruited to the EPL 7.12 A partial summary of results 8 Networks of player movements to the EPL 8.1 Success in the EPL 8.2 The overall presence of other countries in the EPL 8.3 Network flows of footballers between clubs to reach the EPL 8.4 Moves from EPL clubs 8.5 Moves solely within the EPL 8.6 All trails of footballers to the EPL 8.7 Summary and conclusions 9 Mapping Spatial Diversity in the United States of America 9.1 Mapping Nations as Spatial Units of the United States 9.2 Representing networks in space 9.3 Clustering with a relational constraint 9.4 Data for constrained spatial clustering 9.5 Clustering the US counties with a spatial relational constraint 9.6 Summary 10 On studying large networks 10.1 Substance 10.2 Methods, techniques and algorithms 10.3 Network data 10.4 Surprises and issues triggered by them 10.5 Future work 10.6 Two final comments Appendix: Data Documentation A.1 Bibliographic networks A.2 Patent data A.3 Supreme Court data A.4 Football Data A.5 The USA spatial county network References Person index Subject index. - Includes bibliographical references and index. - Print version record and CIP data provided by publisher; resource not viewed</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns. This text identifies the social processes generating these networks and how networks have evolved"--</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns"--</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Social networks</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Social networks</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux sociaux ; Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux sociaux ; Simulation par ordinateur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Probability & Statistics ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSYCHOLOGY ; Social Psychology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social networks ; Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Llibres electrònics</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780470714522</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780470714522</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781118915356/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-108522326 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:10Z |
institution | BVB |
isbn | 9781118915370 1118915372 9781118915363 1118915364 9781118915356 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 450 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
spelling | Batagelj, Vladimir 1948- VerfasserIn aut Understanding large temporal networks and spatial networks exploration, pattern searching, visualization and network evolution Vladimir Batagelj, Patrick Doreian, Anuska Ferligo, Natasa Kejzar 1411 Hoboken Wiley 2014 1 Online-Ressource (xiv, 450 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine generated contents note: Dedication Preface 1 Temporal and spatial networks 1.1 Modern social network analysis 1.2 Network sizes 1.3 Substantive concerns 1.4 Computational methods 1.5 Data for large temporal networks 1.6 Induction and deduction 2 Foundations of methods for large networks 2.1 Networks 2.2 Types of networks 2.3 Large networks 2.4 Strategies for analyzing large networks 2.5 Statistical network measures 2.6 Subnetworks 2.7 Connectivity properties of networks 2.8 Triangular and short cycle connectivities 2.9 Islands 2.10 Cores and generalized cores 2.11 Important vertices in networks 2.12 Transition to methods for large networks 3 Methods for large networks 3.1 Acyclic networks 3.2 SPC weights in acyclic networks 3.3 Probabilistic flow in acyclic network 3.4 Nonacyclic citation networks 3.5 Two-mode networks from data tables 3.6 Bibliographic networks 3.7 Weights 3.8 Pathfinder 3.9 Clustering, blockmodeling and community detection 3.10 Clustering symbolic data 3.11 Approaches to temporal networks 3.12 Levels of analysis 3.13 Transition to substantive part 4 Scientific citation and other bibliographic networks 4.1 The centrality citation network 4.2 Preliminary data analyses 4.3 Transforming a citation network into an acyclic network 4.4 The most important works 4.5 SPC weights 4.6 Line cuts 4.7 Line islands 4.8 Other relevant subnetworks for a bounded network 4.9 Collaboration networks 4.10 A brief look at the SNA literature SN5 networks 4.11 On the centrality and SNA collaboration networks 5 Citation patterns in a United States patent data 5.1 Patents 5.2 Supreme Court decisions regarding patents 5.3 The 1976-2006 patent data 5.4 Structural Variables through Time 5.5 Some patterns of technological development 5.6 Important Sub Networks 5.7 Citation Patterns 5.8 Comparing citation patterns for two time intervals 5.9 Summary and conclusions 6 The US Supreme Court Citation Network 6.1 Introduction 6.2 Cocited islands of Supreme Court decisions 6.3 A Native American Line Island 6.4 A 'Perceived Threats to Social Order' line island 6.5 Other perceived threats 6.6 The Dred Scott Decision 6.7 Further reflections on the Supreme Court citation network 7 Football as the world's game 7.1 A brief historical overview 7.2 Football clubs 7.3 Football players 7.4 Football in England 7.5 Player migrations 7.6 Institutional arrangements and the organization of football 7.7 Court rulings 7.8 Specific factors impacting football migration 7.9 Some arguments and propositions 7.10 Some preliminary results 7.11 Player ages when recruited to the EPL 7.12 A partial summary of results 8 Networks of player movements to the EPL 8.1 Success in the EPL 8.2 The overall presence of other countries in the EPL 8.3 Network flows of footballers between clubs to reach the EPL 8.4 Moves from EPL clubs 8.5 Moves solely within the EPL 8.6 All trails of footballers to the EPL 8.7 Summary and conclusions 9 Mapping Spatial Diversity in the United States of America 9.1 Mapping Nations as Spatial Units of the United States 9.2 Representing networks in space 9.3 Clustering with a relational constraint 9.4 Data for constrained spatial clustering 9.5 Clustering the US counties with a spatial relational constraint 9.6 Summary 10 On studying large networks 10.1 Substance 10.2 Methods, techniques and algorithms 10.3 Network data 10.4 Surprises and issues triggered by them 10.5 Future work 10.6 Two final comments Appendix: Data Documentation A.1 Bibliographic networks A.2 Patent data A.3 Supreme Court data A.4 Football Data A.5 The USA spatial county network References Person index Subject index. - Includes bibliographical references and index. - Print version record and CIP data provided by publisher; resource not viewed "This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns. This text identifies the social processes generating these networks and how networks have evolved"-- "This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns"-- Social networks Mathematical models Social networks Computer simulation Réseaux sociaux ; Modèles mathématiques Réseaux sociaux ; Simulation par ordinateur MATHEMATICS ; Probability & Statistics ; General PSYCHOLOGY ; Social Psychology Social networks ; Mathematical models Llibres electrònics 9780470714522 Erscheint auch als Druck-Ausgabe 9780470714522 |
spellingShingle | Batagelj, Vladimir 1948- Understanding large temporal networks and spatial networks exploration, pattern searching, visualization and network evolution Social networks Mathematical models Social networks Computer simulation Réseaux sociaux ; Modèles mathématiques Réseaux sociaux ; Simulation par ordinateur MATHEMATICS ; Probability & Statistics ; General PSYCHOLOGY ; Social Psychology Social networks ; Mathematical models Llibres electrònics |
title | Understanding large temporal networks and spatial networks exploration, pattern searching, visualization and network evolution |
title_auth | Understanding large temporal networks and spatial networks exploration, pattern searching, visualization and network evolution |
title_exact_search | Understanding large temporal networks and spatial networks exploration, pattern searching, visualization and network evolution |
title_full | Understanding large temporal networks and spatial networks exploration, pattern searching, visualization and network evolution Vladimir Batagelj, Patrick Doreian, Anuska Ferligo, Natasa Kejzar |
title_fullStr | Understanding large temporal networks and spatial networks exploration, pattern searching, visualization and network evolution Vladimir Batagelj, Patrick Doreian, Anuska Ferligo, Natasa Kejzar |
title_full_unstemmed | Understanding large temporal networks and spatial networks exploration, pattern searching, visualization and network evolution Vladimir Batagelj, Patrick Doreian, Anuska Ferligo, Natasa Kejzar |
title_short | Understanding large temporal networks and spatial networks |
title_sort | understanding large temporal networks and spatial networks exploration pattern searching visualization and network evolution |
title_sub | exploration, pattern searching, visualization and network evolution |
topic | Social networks Mathematical models Social networks Computer simulation Réseaux sociaux ; Modèles mathématiques Réseaux sociaux ; Simulation par ordinateur MATHEMATICS ; Probability & Statistics ; General PSYCHOLOGY ; Social Psychology Social networks ; Mathematical models Llibres electrònics |
topic_facet | Social networks Mathematical models Social networks Computer simulation Réseaux sociaux ; Modèles mathématiques Réseaux sociaux ; Simulation par ordinateur MATHEMATICS ; Probability & Statistics ; General PSYCHOLOGY ; Social Psychology Social networks ; Mathematical models Llibres electrònics |
work_keys_str_mv | AT batageljvladimir understandinglargetemporalnetworksandspatialnetworksexplorationpatternsearchingvisualizationandnetworkevolution |