Machine learning with noisy labels: definitions, theory, techniques, and solutions
Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
San Diego, CA
Academic Press
[2024]
|
Ausgabe: | First edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9780443154423/?ar |
Zusammenfassung: | Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. Alternatively, many poorly curated training sets containing noisy labels are readily available to be used to build new models. However, the successful exploration of such noisy-label training sets depends on the development of algorithms and models that are robust to these noisy labels. |
Beschreibung: | Includes bibliographical references and index. - Description based on print version record |
Umfang: | 1 Online-Ressource. |
ISBN: | 9780443154423 0443154422 |
Internformat
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-106392395 | ||
003 | DE-627-1 | ||
005 | 20240819122016.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240819s2024 xx |||||o 00| ||eng c | ||
020 | |a 9780443154423 |c electronic bk. |9 978-0-443-15442-3 | ||
020 | |a 0443154422 |c electronic bk. |9 0-443-15442-2 | ||
035 | |a (DE-627-1)106392395 | ||
035 | |a (DE-599)KEP106392395 | ||
035 | |a (ORHE)9780443154423 | ||
035 | |a (DE-627-1)106392395 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20240701 | |
100 | 1 | |a Carneiro, Gustavo |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine learning with noisy labels |b definitions, theory, techniques, and solutions |c Gustavo Carneiro |
250 | |a First edition. | ||
264 | 1 | |a San Diego, CA |b Academic Press |c [2024] | |
300 | |a 1 Online-Ressource. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Description based on print version record | ||
520 | |a Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. Alternatively, many poorly curated training sets containing noisy labels are readily available to be used to build new models. However, the successful exploration of such noisy-label training sets depends on the development of algorithms and models that are robust to these noisy labels. | ||
650 | 0 | |a Machine learning | |
650 | 4 | |a Apprentissage automatique | |
776 | 1 | |z 0443154414 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0443154414 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780443154423/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-106392395 |
---|---|
_version_ | 1821494929338138624 |
adam_text | |
any_adam_object | |
author | Carneiro, Gustavo |
author_facet | Carneiro, Gustavo |
author_role | aut |
author_sort | Carneiro, Gustavo |
author_variant | g c gc |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)106392395 (DE-599)KEP106392395 (ORHE)9780443154423 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02081nam a22003972 4500</leader><controlfield tag="001">ZDB-30-ORH-106392395</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240819122016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240819s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780443154423</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-443-15442-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0443154422</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-443-15442-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)106392395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP106392395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780443154423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)106392395</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20240701</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carneiro, Gustavo</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with noisy labels</subfield><subfield code="b">definitions, theory, techniques, and solutions</subfield><subfield code="c">Gustavo Carneiro</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego, CA</subfield><subfield code="b">Academic Press</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Description based on print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. Alternatively, many poorly curated training sets containing noisy labels are readily available to be used to build new models. However, the successful exploration of such noisy-label training sets depends on the development of algorithms and models that are robust to these noisy labels.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">0443154414</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0443154414</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780443154423/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-106392395 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:11Z |
institution | BVB |
isbn | 9780443154423 0443154422 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Academic Press |
record_format | marc |
spelling | Carneiro, Gustavo VerfasserIn aut Machine learning with noisy labels definitions, theory, techniques, and solutions Gustavo Carneiro First edition. San Diego, CA Academic Press [2024] 1 Online-Ressource. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Description based on print version record Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. Alternatively, many poorly curated training sets containing noisy labels are readily available to be used to build new models. However, the successful exploration of such noisy-label training sets depends on the development of algorithms and models that are robust to these noisy labels. Machine learning Apprentissage automatique 0443154414 Erscheint auch als Druck-Ausgabe 0443154414 |
spellingShingle | Carneiro, Gustavo Machine learning with noisy labels definitions, theory, techniques, and solutions Machine learning Apprentissage automatique |
title | Machine learning with noisy labels definitions, theory, techniques, and solutions |
title_auth | Machine learning with noisy labels definitions, theory, techniques, and solutions |
title_exact_search | Machine learning with noisy labels definitions, theory, techniques, and solutions |
title_full | Machine learning with noisy labels definitions, theory, techniques, and solutions Gustavo Carneiro |
title_fullStr | Machine learning with noisy labels definitions, theory, techniques, and solutions Gustavo Carneiro |
title_full_unstemmed | Machine learning with noisy labels definitions, theory, techniques, and solutions Gustavo Carneiro |
title_short | Machine learning with noisy labels |
title_sort | machine learning with noisy labels definitions theory techniques and solutions |
title_sub | definitions, theory, techniques, and solutions |
topic | Machine learning Apprentissage automatique |
topic_facet | Machine learning Apprentissage automatique |
work_keys_str_mv | AT carneirogustavo machinelearningwithnoisylabelsdefinitionstheorytechniquesandsolutions |