Neural networks modeling and control: applications for unknown nonlinear delayed systems in discrete time
Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN)...
Gespeichert in:
Beteiligte Personen: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Amsterdam
Academic Press
2019
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9780128170793/?ar |
Zusammenfassung: | Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. Provide in-depth analysis of neural control models and methodologies Presents a comprehensive review of common problems in real-life neural network systems Includes an analysis of potential applications, prototypes and future trends. |
Beschreibung: | <p>1. Introduction 2. Mathematical preliminaries 3. Recurrent high order neural network identification of nonlinear discrete-time unknown system with time-delays 4. Neural identifier-control scheme for nonlinear discrete-time unknown system with time-delays 5. Recurrent high order neural network observer of nonlinear discrete-time unknown systems with time-delays 6. Neural observer-control scheme for nonlinear discrete-time unknown system with time-delays 7. Concluding remarks and future trends</p> <p>Appendix A. Artificial neural networks B. Linear induction motor prototype C. Differential robot prototype</p>. - Description based on online resource, title from digital title page (viewed on December 21, 2020) |
Umfang: | 1 Online-Ressource illustrations. |
ISBN: | 9780128170793 0128170794 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-104365897 | ||
003 | DE-627-1 | ||
005 | 20241129125351.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240701s2019 xx |||||o 00| ||eng c | ||
020 | |a 9780128170793 |c ePub ebook |9 978-0-12-817079-3 | ||
020 | |a 0128170794 |9 0-12-817079-4 | ||
035 | |a (DE-627-1)104365897 | ||
035 | |a (DE-599)KEP104365897 | ||
035 | |a (ORHE)9780128170793 | ||
035 | |a (DE-627-1)104365897 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.32 |2 23 | |
100 | 1 | |a Rios, Jorge D. |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Neural networks modeling and control |b applications for unknown nonlinear delayed systems in discrete time |c Jorge D. Rios, Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco |
264 | 1 | |a Amsterdam |b Academic Press |c 2019 | |
300 | |a 1 Online-Ressource |b illustrations. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a <p>1. Introduction 2. Mathematical preliminaries 3. Recurrent high order neural network identification of nonlinear discrete-time unknown system with time-delays 4. Neural identifier-control scheme for nonlinear discrete-time unknown system with time-delays 5. Recurrent high order neural network observer of nonlinear discrete-time unknown systems with time-delays 6. Neural observer-control scheme for nonlinear discrete-time unknown system with time-delays 7. Concluding remarks and future trends</p> <p>Appendix A. Artificial neural networks B. Linear induction motor prototype C. Differential robot prototype</p>. - Description based on online resource, title from digital title page (viewed on December 21, 2020) | ||
520 | |a Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. Provide in-depth analysis of neural control models and methodologies Presents a comprehensive review of common problems in real-life neural network systems Includes an analysis of potential applications, prototypes and future trends. | ||
650 | 0 | |a Neural networks (Computer science) | |
650 | 0 | |a Neural networks (Computer science) |x Industrial applications | |
650 | 0 | |a Discrete-time systems | |
650 | 0 | |a Discrete-time systems |x Industrial applications | |
650 | 4 | |a Réseaux neuronaux (Informatique) | |
650 | 4 | |a Réseaux neuronaux (Informatique) ; Applications industrielles | |
650 | 4 | |a Systèmes échantillonnés | |
650 | 4 | |a Systèmes échantillonnés ; Applications industrielles | |
650 | 4 | |a Discrete-time systems | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Neural networks (Computer science) ; Industrial applications | |
700 | 1 | |a Alanis, Alma Y. |e VerfasserIn |4 aut | |
700 | 1 | |a Arana-Daniel, Nancy |e VerfasserIn |4 aut | |
700 | 1 | |a Lopez-Franco, Carlos |e VerfasserIn |4 aut | |
776 | 1 | |z 9780128170786 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128170786 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780128170793/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | 1 | |a ZDB-30-ORH |d 20241129 | |
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-104365897 |
---|---|
_version_ | 1821494921944629248 |
adam_text | |
any_adam_object | |
author | Rios, Jorge D. Alanis, Alma Y. Arana-Daniel, Nancy Lopez-Franco, Carlos |
author_facet | Rios, Jorge D. Alanis, Alma Y. Arana-Daniel, Nancy Lopez-Franco, Carlos |
author_role | aut aut aut aut |
author_sort | Rios, Jorge D. |
author_variant | j d r jd jdr a y a ay aya n a d nad c l f clf |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)104365897 (DE-599)KEP104365897 (ORHE)9780128170793 |
dewey-full | 006.32 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.32 |
dewey-search | 006.32 |
dewey-sort | 16.32 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03871cam a22005292 4500</leader><controlfield tag="001">ZDB-30-ORH-104365897</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241129125351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240701s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128170793</subfield><subfield code="c">ePub ebook</subfield><subfield code="9">978-0-12-817079-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128170794</subfield><subfield code="9">0-12-817079-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)104365897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP104365897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780128170793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)104365897</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.32</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rios, Jorge D.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural networks modeling and control</subfield><subfield code="b">applications for unknown nonlinear delayed systems in discrete time</subfield><subfield code="c">Jorge D. Rios, Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"><p>1. Introduction 2. Mathematical preliminaries 3. Recurrent high order neural network identification of nonlinear discrete-time unknown system with time-delays 4. Neural identifier-control scheme for nonlinear discrete-time unknown system with time-delays 5. Recurrent high order neural network observer of nonlinear discrete-time unknown systems with time-delays 6. Neural observer-control scheme for nonlinear discrete-time unknown system with time-delays 7. Concluding remarks and future trends</p> <p>Appendix A. Artificial neural networks B. Linear induction motor prototype C. Differential robot prototype</p>. - Description based on online resource, title from digital title page (viewed on December 21, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. Provide in-depth analysis of neural control models and methodologies Presents a comprehensive review of common problems in real-life neural network systems Includes an analysis of potential applications, prototypes and future trends.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Discrete-time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Discrete-time systems</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique) ; Applications industrielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systèmes échantillonnés</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systèmes échantillonnés ; Applications industrielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete-time systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science) ; Industrial applications</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alanis, Alma Y.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arana-Daniel, Nancy</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lopez-Franco, Carlos</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780128170786</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128170786</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780128170793/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1="1" ind2=" "><subfield code="a">ZDB-30-ORH</subfield><subfield code="d">20241129</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-104365897 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:22:04Z |
institution | BVB |
isbn | 9780128170793 0128170794 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource illustrations. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Academic Press |
record_format | marc |
spelling | Rios, Jorge D. VerfasserIn aut Neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time Jorge D. Rios, Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco Amsterdam Academic Press 2019 1 Online-Ressource illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p>1. Introduction 2. Mathematical preliminaries 3. Recurrent high order neural network identification of nonlinear discrete-time unknown system with time-delays 4. Neural identifier-control scheme for nonlinear discrete-time unknown system with time-delays 5. Recurrent high order neural network observer of nonlinear discrete-time unknown systems with time-delays 6. Neural observer-control scheme for nonlinear discrete-time unknown system with time-delays 7. Concluding remarks and future trends</p> <p>Appendix A. Artificial neural networks B. Linear induction motor prototype C. Differential robot prototype</p>. - Description based on online resource, title from digital title page (viewed on December 21, 2020) Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. Provide in-depth analysis of neural control models and methodologies Presents a comprehensive review of common problems in real-life neural network systems Includes an analysis of potential applications, prototypes and future trends. Neural networks (Computer science) Neural networks (Computer science) Industrial applications Discrete-time systems Discrete-time systems Industrial applications Réseaux neuronaux (Informatique) Réseaux neuronaux (Informatique) ; Applications industrielles Systèmes échantillonnés Systèmes échantillonnés ; Applications industrielles Neural networks (Computer science) ; Industrial applications Alanis, Alma Y. VerfasserIn aut Arana-Daniel, Nancy VerfasserIn aut Lopez-Franco, Carlos VerfasserIn aut 9780128170786 Erscheint auch als Druck-Ausgabe 9780128170786 |
spellingShingle | Rios, Jorge D. Alanis, Alma Y. Arana-Daniel, Nancy Lopez-Franco, Carlos Neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time Neural networks (Computer science) Neural networks (Computer science) Industrial applications Discrete-time systems Discrete-time systems Industrial applications Réseaux neuronaux (Informatique) Réseaux neuronaux (Informatique) ; Applications industrielles Systèmes échantillonnés Systèmes échantillonnés ; Applications industrielles Neural networks (Computer science) ; Industrial applications |
title | Neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time |
title_auth | Neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time |
title_exact_search | Neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time |
title_full | Neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time Jorge D. Rios, Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco |
title_fullStr | Neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time Jorge D. Rios, Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco |
title_full_unstemmed | Neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time Jorge D. Rios, Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco |
title_short | Neural networks modeling and control |
title_sort | neural networks modeling and control applications for unknown nonlinear delayed systems in discrete time |
title_sub | applications for unknown nonlinear delayed systems in discrete time |
topic | Neural networks (Computer science) Neural networks (Computer science) Industrial applications Discrete-time systems Discrete-time systems Industrial applications Réseaux neuronaux (Informatique) Réseaux neuronaux (Informatique) ; Applications industrielles Systèmes échantillonnés Systèmes échantillonnés ; Applications industrielles Neural networks (Computer science) ; Industrial applications |
topic_facet | Neural networks (Computer science) Neural networks (Computer science) Industrial applications Discrete-time systems Discrete-time systems Industrial applications Réseaux neuronaux (Informatique) Réseaux neuronaux (Informatique) ; Applications industrielles Systèmes échantillonnés Systèmes échantillonnés ; Applications industrielles Neural networks (Computer science) ; Industrial applications |
work_keys_str_mv | AT riosjorged neuralnetworksmodelingandcontrolapplicationsforunknownnonlineardelayedsystemsindiscretetime AT alanisalmay neuralnetworksmodelingandcontrolapplicationsforunknownnonlineardelayedsystemsindiscretetime AT aranadanielnancy neuralnetworksmodelingandcontrolapplicationsforunknownnonlineardelayedsystemsindiscretetime AT lopezfrancocarlos neuralnetworksmodelingandcontrolapplicationsforunknownnonlineardelayedsystemsindiscretetime |