Hands-on large language models: language understanding and generation
AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this bo...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media, Inc.
2024
|
Ausgabe: | First edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781098150952/?ar |
Zusammenfassung: | AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pretrained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large numbers of text documents; and use existing libraries and pretrained models for text classification, search, and clusterings. |
Beschreibung: | Includes bibliographical references |
Umfang: | 1 Online-Ressource (350 Seiten) illustrations |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-100860052 | ||
003 | DE-627-1 | ||
005 | 20241129125348.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240227s2024 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)100860052 | ||
035 | |a (DE-599)KEP100860052 | ||
035 | |a (ORHE)9781098150952 | ||
035 | |a (DE-627-1)100860052 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/5 |2 23/eng/20240206 | |
100 | 1 | |a Alammar, Jay |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Hands-on large language models |b language understanding and generation |c Jay Alammar and Maarten Grootendorst |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media, Inc. |c 2024 | |
300 | |a 1 Online-Ressource (350 Seiten) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references | ||
520 | |a AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pretrained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large numbers of text documents; and use existing libraries and pretrained models for text classification, search, and clusterings. | ||
650 | 0 | |a Natural language generation (Computer science) | |
650 | 0 | |a Artificial intelligence |x Computer programs | |
650 | 0 | |a Natural language processing (Computer science) | |
650 | 4 | |a Génération automatique de texte | |
650 | 4 | |a Intelligence artificielle ; Logiciels | |
650 | 4 | |a Traitement automatique des langues naturelles | |
700 | 1 | |a Grootendorst, Maarten |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098150952/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | 1 | |a ZDB-30-ORH |d 20241129 | |
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-100860052 |
---|---|
_version_ | 1821494922270736384 |
adam_text | |
any_adam_object | |
author | Alammar, Jay Grootendorst, Maarten |
author_facet | Alammar, Jay Grootendorst, Maarten |
author_role | aut aut |
author_sort | Alammar, Jay |
author_variant | j a ja m g mg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)100860052 (DE-599)KEP100860052 (ORHE)9781098150952 |
dewey-full | 006.3/5 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/5 |
dewey-search | 006.3/5 |
dewey-sort | 16.3 15 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02334cam a22004092 4500</leader><controlfield tag="001">ZDB-30-ORH-100860052</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241129125348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240227s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100860052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100860052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098150952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100860052</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/5</subfield><subfield code="2">23/eng/20240206</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alammar, Jay</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-on large language models</subfield><subfield code="b">language understanding and generation</subfield><subfield code="c">Jay Alammar and Maarten Grootendorst</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (350 Seiten)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pretrained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large numbers of text documents; and use existing libraries and pretrained models for text classification, search, and clusterings.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language generation (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Génération automatique de texte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle ; Logiciels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grootendorst, Maarten</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098150952/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1="1" ind2=" "><subfield code="a">ZDB-30-ORH</subfield><subfield code="d">20241129</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-100860052 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:22:04Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (350 Seiten) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Alammar, Jay VerfasserIn aut Hands-on large language models language understanding and generation Jay Alammar and Maarten Grootendorst First edition. Sebastopol, CA O'Reilly Media, Inc. 2024 1 Online-Ressource (350 Seiten) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pretrained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large numbers of text documents; and use existing libraries and pretrained models for text classification, search, and clusterings. Natural language generation (Computer science) Artificial intelligence Computer programs Natural language processing (Computer science) Génération automatique de texte Intelligence artificielle ; Logiciels Traitement automatique des langues naturelles Grootendorst, Maarten VerfasserIn aut |
spellingShingle | Alammar, Jay Grootendorst, Maarten Hands-on large language models language understanding and generation Natural language generation (Computer science) Artificial intelligence Computer programs Natural language processing (Computer science) Génération automatique de texte Intelligence artificielle ; Logiciels Traitement automatique des langues naturelles |
title | Hands-on large language models language understanding and generation |
title_auth | Hands-on large language models language understanding and generation |
title_exact_search | Hands-on large language models language understanding and generation |
title_full | Hands-on large language models language understanding and generation Jay Alammar and Maarten Grootendorst |
title_fullStr | Hands-on large language models language understanding and generation Jay Alammar and Maarten Grootendorst |
title_full_unstemmed | Hands-on large language models language understanding and generation Jay Alammar and Maarten Grootendorst |
title_short | Hands-on large language models |
title_sort | hands on large language models language understanding and generation |
title_sub | language understanding and generation |
topic | Natural language generation (Computer science) Artificial intelligence Computer programs Natural language processing (Computer science) Génération automatique de texte Intelligence artificielle ; Logiciels Traitement automatique des langues naturelles |
topic_facet | Natural language generation (Computer science) Artificial intelligence Computer programs Natural language processing (Computer science) Génération automatique de texte Intelligence artificielle ; Logiciels Traitement automatique des langues naturelles |
work_keys_str_mv | AT alammarjay handsonlargelanguagemodelslanguageunderstandingandgeneration AT grootendorstmaarten handsonlargelanguagemodelslanguageunderstandingandgeneration |