Machine Learning Infrastructure and Best Practices for Software Engineers: Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System
Efficiently transform your initial designs into big systems by learning the foundations of infrastructure, algorithms, and ethical considerations for modern software products Key Features Learn how to scale-up your machine learning software to a professional level Secure the quality of your machine...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham
Packt Publishing, Limited
2024
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781837634064/?ar |
Zusammenfassung: | Efficiently transform your initial designs into big systems by learning the foundations of infrastructure, algorithms, and ethical considerations for modern software products Key Features Learn how to scale-up your machine learning software to a professional level Secure the quality of your machine learning pipeline at runtime Apply your knowledge to natural languages, programming languages, and images Book Description Although creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products. The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you'll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality. Towards the end, you'll address the most challenging aspect of large-scale machine learning systems - ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began - large-scale machine learning software. What you will learn Identify what the machine learning software best suits your needs Work with scalable machine learning pipelines Scale up pipelines from prototypes to fully fledged software Choose suitable data sources and processing methods for your product Differentiate raw data from complex processing, noting their advantages Track and mitigate important ethical risks in machine learning software Work with testing and validation for machine learning systems Who this book is for If you're a machine learning engineer, this book will help you design more robust software, and understand which scaling-up challenges you need to address and why. Software engineers will benefit from best practices that will make your products robust, reliable, and innovative. Decision makers will also find lots of useful information in this book, including guidance on what to look for in a well-designed machine learning software product. |
Beschreibung: | Description based upon print version of record. - From feature extraction to models. - Includes bibliographical references and index |
Umfang: | 1 Online-Ressource (346 Seiten) illustrations |
ISBN: | 9781837636945 183763694X |
Internformat
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-100859755 | ||
003 | DE-627-1 | ||
005 | 20240227122213.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240227s2024 xx |||||o 00| ||eng c | ||
020 | |a 9781837636945 |9 978-1-83763-694-5 | ||
020 | |a 183763694X |9 1-83763-694-X | ||
035 | |a (DE-627-1)100859755 | ||
035 | |a (DE-599)KEP100859755 | ||
035 | |a (ORHE)9781837634064 | ||
035 | |a (DE-627-1)100859755 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20240214 | |
100 | 1 | |a Staron, Miroslaw |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine Learning Infrastructure and Best Practices for Software Engineers |b Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System |c Miroslaw Staron) |
264 | 1 | |a Birmingham |b Packt Publishing, Limited |c 2024 | |
300 | |a 1 Online-Ressource (346 Seiten) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Description based upon print version of record. - From feature extraction to models. - Includes bibliographical references and index | ||
520 | |a Efficiently transform your initial designs into big systems by learning the foundations of infrastructure, algorithms, and ethical considerations for modern software products Key Features Learn how to scale-up your machine learning software to a professional level Secure the quality of your machine learning pipeline at runtime Apply your knowledge to natural languages, programming languages, and images Book Description Although creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products. The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you'll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality. Towards the end, you'll address the most challenging aspect of large-scale machine learning systems - ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began - large-scale machine learning software. What you will learn Identify what the machine learning software best suits your needs Work with scalable machine learning pipelines Scale up pipelines from prototypes to fully fledged software Choose suitable data sources and processing methods for your product Differentiate raw data from complex processing, noting their advantages Track and mitigate important ethical risks in machine learning software Work with testing and validation for machine learning systems Who this book is for If you're a machine learning engineer, this book will help you design more robust software, and understand which scaling-up challenges you need to address and why. Software engineers will benefit from best practices that will make your products robust, reliable, and innovative. Decision makers will also find lots of useful information in this book, including guidance on what to look for in a well-designed machine learning software product. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Software engineering | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Génie logiciel | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781837634064/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-100859755 |
---|---|
_version_ | 1821494934660710400 |
adam_text | |
any_adam_object | |
author | Staron, Miroslaw |
author_facet | Staron, Miroslaw |
author_role | aut |
author_sort | Staron, Miroslaw |
author_variant | m s ms |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)100859755 (DE-599)KEP100859755 (ORHE)9781837634064 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04166nam a22003852 4500</leader><controlfield tag="001">ZDB-30-ORH-100859755</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240227122213.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240227s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781837636945</subfield><subfield code="9">978-1-83763-694-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">183763694X</subfield><subfield code="9">1-83763-694-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100859755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100859755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781837634064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100859755</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20240214</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Staron, Miroslaw</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning Infrastructure and Best Practices for Software Engineers</subfield><subfield code="b">Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System</subfield><subfield code="c">Miroslaw Staron)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (346 Seiten)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record. - From feature extraction to models. - Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Efficiently transform your initial designs into big systems by learning the foundations of infrastructure, algorithms, and ethical considerations for modern software products Key Features Learn how to scale-up your machine learning software to a professional level Secure the quality of your machine learning pipeline at runtime Apply your knowledge to natural languages, programming languages, and images Book Description Although creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products. The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you'll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality. Towards the end, you'll address the most challenging aspect of large-scale machine learning systems - ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began - large-scale machine learning software. What you will learn Identify what the machine learning software best suits your needs Work with scalable machine learning pipelines Scale up pipelines from prototypes to fully fledged software Choose suitable data sources and processing methods for your product Differentiate raw data from complex processing, noting their advantages Track and mitigate important ethical risks in machine learning software Work with testing and validation for machine learning systems Who this book is for If you're a machine learning engineer, this book will help you design more robust software, and understand which scaling-up challenges you need to address and why. Software engineers will benefit from best practices that will make your products robust, reliable, and innovative. Decision makers will also find lots of useful information in this book, including guidance on what to look for in a well-designed machine learning software product.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Software engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Génie logiciel</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781837634064/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-100859755 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:22:16Z |
institution | BVB |
isbn | 9781837636945 183763694X |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (346 Seiten) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing, Limited |
record_format | marc |
spelling | Staron, Miroslaw VerfasserIn aut Machine Learning Infrastructure and Best Practices for Software Engineers Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System Miroslaw Staron) Birmingham Packt Publishing, Limited 2024 1 Online-Ressource (346 Seiten) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Description based upon print version of record. - From feature extraction to models. - Includes bibliographical references and index Efficiently transform your initial designs into big systems by learning the foundations of infrastructure, algorithms, and ethical considerations for modern software products Key Features Learn how to scale-up your machine learning software to a professional level Secure the quality of your machine learning pipeline at runtime Apply your knowledge to natural languages, programming languages, and images Book Description Although creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products. The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you'll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality. Towards the end, you'll address the most challenging aspect of large-scale machine learning systems - ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began - large-scale machine learning software. What you will learn Identify what the machine learning software best suits your needs Work with scalable machine learning pipelines Scale up pipelines from prototypes to fully fledged software Choose suitable data sources and processing methods for your product Differentiate raw data from complex processing, noting their advantages Track and mitigate important ethical risks in machine learning software Work with testing and validation for machine learning systems Who this book is for If you're a machine learning engineer, this book will help you design more robust software, and understand which scaling-up challenges you need to address and why. Software engineers will benefit from best practices that will make your products robust, reliable, and innovative. Decision makers will also find lots of useful information in this book, including guidance on what to look for in a well-designed machine learning software product. Machine learning Software engineering Apprentissage automatique Génie logiciel |
spellingShingle | Staron, Miroslaw Machine Learning Infrastructure and Best Practices for Software Engineers Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System Machine learning Software engineering Apprentissage automatique Génie logiciel |
title | Machine Learning Infrastructure and Best Practices for Software Engineers Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System |
title_auth | Machine Learning Infrastructure and Best Practices for Software Engineers Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System |
title_exact_search | Machine Learning Infrastructure and Best Practices for Software Engineers Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System |
title_full | Machine Learning Infrastructure and Best Practices for Software Engineers Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System Miroslaw Staron) |
title_fullStr | Machine Learning Infrastructure and Best Practices for Software Engineers Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System Miroslaw Staron) |
title_full_unstemmed | Machine Learning Infrastructure and Best Practices for Software Engineers Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System Miroslaw Staron) |
title_short | Machine Learning Infrastructure and Best Practices for Software Engineers |
title_sort | machine learning infrastructure and best practices for software engineers take your machine learning software from a prototype to a fully fledged software system |
title_sub | Take Your Machine Learning Software from a Prototype to a Fully Fledged Software System |
topic | Machine learning Software engineering Apprentissage automatique Génie logiciel |
topic_facet | Machine learning Software engineering Apprentissage automatique Génie logiciel |
work_keys_str_mv | AT staronmiroslaw machinelearninginfrastructureandbestpracticesforsoftwareengineerstakeyourmachinelearningsoftwarefromaprototypetoafullyfledgedsoftwaresystem |