Streamlit for data science: create interactive data apps in Python
An easy-to-follow and comprehensive guide to creating data apps with Streamlit, including how-to guides for working with cloud data warehouses like Snowflake, using pretrained Hugging Face and OpenAI models, and creating apps for job interviews. If you work with data in Python and are looking to cre...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham
Packt Publishing
2023
|
Ausgabe: | Second edition. |
Schriftenreihe: | Expert insight
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781803248226/?ar |
Zusammenfassung: | An easy-to-follow and comprehensive guide to creating data apps with Streamlit, including how-to guides for working with cloud data warehouses like Snowflake, using pretrained Hugging Face and OpenAI models, and creating apps for job interviews. If you work with data in Python and are looking to create data apps that showcase ML models and make beautiful interactive visualizations, then this is the ideal book for you. Streamlit for Data Science, Second Edition, shows you how to create and deploy data apps quickly, all within Python. This helps you create prototypes in hours instead of days! Written by a prolific Streamlit user and senior data scientist at Snowflake, this fully updated second edition builds on the practical nature of the previous edition with exciting updates, including connecting Streamlit to data warehouses like Snowflake, integrating Hugging Face and OpenAI models into your apps, and connecting and building apps on top of Streamlit databases. Plus, there is a totally updated code repository on GitHub to help you practice your newfound skills. You'll start your journey with the fundamentals of Streamlit and gradually build on this foundation by working with machine learning models and producing high-quality interactive apps. The practical examples of both personal data projects and work-related data-focused web applications will help you get to grips with more challenging topics such as Streamlit Components, beautifying your apps, and quick deployment. By the end of this book, you'll be able to create dynamic web apps in Streamlit quickly and effortlessly. |
Beschreibung: | Description based on CIP data; resource not viewed |
Umfang: | 1 Online-Ressource. |
ISBN: | 9781803232959 1803232951 9781803248226 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-097094935 | ||
003 | DE-627-1 | ||
005 | 20240228122055.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231030s2023 xx |||||o 00| ||eng c | ||
020 | |a 9781803232959 |c PDF ebook |9 978-1-80323-295-9 | ||
020 | |a 1803232951 |9 1-80323-295-1 | ||
020 | |a 9781803248226 |9 978-1-80324-822-6 | ||
035 | |a (DE-627-1)097094935 | ||
035 | |a (DE-599)KEP097094935 | ||
035 | |a (ORHE)9781803248226 | ||
035 | |a (DE-627-1)097094935 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.3 |2 23 | |
100 | 1 | |a Richards, Tyler |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Streamlit for data science |b create interactive data apps in Python |c Tyler Richards |
250 | |a Second edition. | ||
264 | 1 | |a Birmingham |b Packt Publishing |c 2023 | |
300 | |a 1 Online-Ressource. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Expert insight | |
500 | |a Description based on CIP data; resource not viewed | ||
520 | |a An easy-to-follow and comprehensive guide to creating data apps with Streamlit, including how-to guides for working with cloud data warehouses like Snowflake, using pretrained Hugging Face and OpenAI models, and creating apps for job interviews. If you work with data in Python and are looking to create data apps that showcase ML models and make beautiful interactive visualizations, then this is the ideal book for you. Streamlit for Data Science, Second Edition, shows you how to create and deploy data apps quickly, all within Python. This helps you create prototypes in hours instead of days! Written by a prolific Streamlit user and senior data scientist at Snowflake, this fully updated second edition builds on the practical nature of the previous edition with exciting updates, including connecting Streamlit to data warehouses like Snowflake, integrating Hugging Face and OpenAI models into your apps, and connecting and building apps on top of Streamlit databases. Plus, there is a totally updated code repository on GitHub to help you practice your newfound skills. You'll start your journey with the fundamentals of Streamlit and gradually build on this foundation by working with machine learning models and producing high-quality interactive apps. The practical examples of both personal data projects and work-related data-focused web applications will help you get to grips with more challenging topics such as Streamlit Components, beautifying your apps, and quick deployment. By the end of this book, you'll be able to create dynamic web apps in Streamlit quickly and effortlessly. | ||
650 | 0 | |a Application software |x Development | |
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Logiciels d'application ; Développement | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Application software ; Development | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Treuille, Adrien |e MitwirkendeR |4 ctb | |
776 | 1 | |z 9781803248226 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781803248226 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781803248226/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-097094935 |
---|---|
_version_ | 1829007843119857664 |
adam_text | |
any_adam_object | |
author | Richards, Tyler |
author2 | Treuille, Adrien |
author2_role | ctb |
author2_variant | a t at |
author_facet | Richards, Tyler Treuille, Adrien |
author_role | aut |
author_sort | Richards, Tyler |
author_variant | t r tr |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)097094935 (DE-599)KEP097094935 (ORHE)9781803248226 |
dewey-full | 005.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.3 |
dewey-search | 005.3 |
dewey-sort | 15.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03294cam a22004812c 4500</leader><controlfield tag="001">ZDB-30-ORH-097094935</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231030s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781803232959</subfield><subfield code="c">PDF ebook</subfield><subfield code="9">978-1-80323-295-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1803232951</subfield><subfield code="9">1-80323-295-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781803248226</subfield><subfield code="9">978-1-80324-822-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)097094935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP097094935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781803248226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)097094935</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Richards, Tyler</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Streamlit for data science</subfield><subfield code="b">create interactive data apps in Python</subfield><subfield code="c">Tyler Richards</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Expert insight</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on CIP data; resource not viewed</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An easy-to-follow and comprehensive guide to creating data apps with Streamlit, including how-to guides for working with cloud data warehouses like Snowflake, using pretrained Hugging Face and OpenAI models, and creating apps for job interviews. If you work with data in Python and are looking to create data apps that showcase ML models and make beautiful interactive visualizations, then this is the ideal book for you. Streamlit for Data Science, Second Edition, shows you how to create and deploy data apps quickly, all within Python. This helps you create prototypes in hours instead of days! Written by a prolific Streamlit user and senior data scientist at Snowflake, this fully updated second edition builds on the practical nature of the previous edition with exciting updates, including connecting Streamlit to data warehouses like Snowflake, integrating Hugging Face and OpenAI models into your apps, and connecting and building apps on top of Streamlit databases. Plus, there is a totally updated code repository on GitHub to help you practice your newfound skills. You'll start your journey with the fundamentals of Streamlit and gradually build on this foundation by working with machine learning models and producing high-quality interactive apps. The practical examples of both personal data projects and work-related data-focused web applications will help you get to grips with more challenging topics such as Streamlit Components, beautifying your apps, and quick deployment. By the end of this book, you'll be able to create dynamic web apps in Streamlit quickly and effortlessly.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Application software</subfield><subfield code="x">Development</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logiciels d'application ; Développement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Application software ; Development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Treuille, Adrien</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781803248226</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781803248226</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781803248226/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-097094935 |
illustrated | Not Illustrated |
indexdate | 2025-04-10T09:36:44Z |
institution | BVB |
isbn | 9781803232959 1803232951 9781803248226 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing |
record_format | marc |
series2 | Expert insight |
spelling | Richards, Tyler VerfasserIn aut Streamlit for data science create interactive data apps in Python Tyler Richards Second edition. Birmingham Packt Publishing 2023 1 Online-Ressource. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Expert insight Description based on CIP data; resource not viewed An easy-to-follow and comprehensive guide to creating data apps with Streamlit, including how-to guides for working with cloud data warehouses like Snowflake, using pretrained Hugging Face and OpenAI models, and creating apps for job interviews. If you work with data in Python and are looking to create data apps that showcase ML models and make beautiful interactive visualizations, then this is the ideal book for you. Streamlit for Data Science, Second Edition, shows you how to create and deploy data apps quickly, all within Python. This helps you create prototypes in hours instead of days! Written by a prolific Streamlit user and senior data scientist at Snowflake, this fully updated second edition builds on the practical nature of the previous edition with exciting updates, including connecting Streamlit to data warehouses like Snowflake, integrating Hugging Face and OpenAI models into your apps, and connecting and building apps on top of Streamlit databases. Plus, there is a totally updated code repository on GitHub to help you practice your newfound skills. You'll start your journey with the fundamentals of Streamlit and gradually build on this foundation by working with machine learning models and producing high-quality interactive apps. The practical examples of both personal data projects and work-related data-focused web applications will help you get to grips with more challenging topics such as Streamlit Components, beautifying your apps, and quick deployment. By the end of this book, you'll be able to create dynamic web apps in Streamlit quickly and effortlessly. Application software Development Python (Computer program language) Logiciels d'application ; Développement Python (Langage de programmation) Application software ; Development Treuille, Adrien MitwirkendeR ctb 9781803248226 Erscheint auch als Druck-Ausgabe 9781803248226 |
spellingShingle | Richards, Tyler Streamlit for data science create interactive data apps in Python Application software Development Python (Computer program language) Logiciels d'application ; Développement Python (Langage de programmation) Application software ; Development |
title | Streamlit for data science create interactive data apps in Python |
title_auth | Streamlit for data science create interactive data apps in Python |
title_exact_search | Streamlit for data science create interactive data apps in Python |
title_full | Streamlit for data science create interactive data apps in Python Tyler Richards |
title_fullStr | Streamlit for data science create interactive data apps in Python Tyler Richards |
title_full_unstemmed | Streamlit for data science create interactive data apps in Python Tyler Richards |
title_short | Streamlit for data science |
title_sort | streamlit for data science create interactive data apps in python |
title_sub | create interactive data apps in Python |
topic | Application software Development Python (Computer program language) Logiciels d'application ; Développement Python (Langage de programmation) Application software ; Development |
topic_facet | Application software Development Python (Computer program language) Logiciels d'application ; Développement Python (Langage de programmation) Application software ; Development |
work_keys_str_mv | AT richardstyler streamlitfordatasciencecreateinteractivedataappsinpython AT treuilleadrien streamlitfordatasciencecreateinteractivedataappsinpython |