Machine learning for emotion analysis in Python: build AI-powered tools for analyzing emotion using natural language processing and machine learning
Artificial intelligence and machine learning are the technologies of the future, and this is the perfect time to tap into their potential and add value to your business. Machine Learning for Emotion Analysis in Python helps you employ these cutting-edge technologies in your customer feedback system...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham, UK
Packt Publishing Ltd.
2023
|
Ausgabe: | 1st edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781803240688/?ar |
Zusammenfassung: | Artificial intelligence and machine learning are the technologies of the future, and this is the perfect time to tap into their potential and add value to your business. Machine Learning for Emotion Analysis in Python helps you employ these cutting-edge technologies in your customer feedback system and in turn grow your business exponentially. With this book, you'll take your foundational data science skills and grow them in the exciting realm of emotion analysis. By following a practical approach, you'll turn customer feedback into meaningful insights assisting you in making smart and data-driven business decisions. The book will help you understand how to preprocess data, build a serviceable dataset, and ensure top-notch data quality. Once you're set up for success, you'll explore complex ML techniques, uncovering the concepts of deep neural networks, support vector machines, conditional probabilities, and more. Finally, you'll acquire practical knowledge using in-depth use cases showing how the experimental results can be transformed into real-life examples and how emotion mining can help track short- and long-term changes in public opinion. By the end of this book, you'll be well-equipped to use emotion mining and analysis to drive business decisions. |
Beschreibung: | Includes index |
Umfang: | 1 Online-Ressource (334 Seiten) illustrations |
ISBN: | 1803246715 9781803246710 9781803240688 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-09709465X | ||
003 | DE-627-1 | ||
005 | 20240228122054.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231030s2023 xx |||||o 00| ||eng c | ||
020 | |a 1803246715 |c electronic bk. |9 1-80324-671-5 | ||
020 | |a 9781803246710 |c electronic bk. |9 978-1-80324-671-0 | ||
020 | |a 9781803240688 |9 978-1-80324-068-8 | ||
035 | |a (DE-627-1)09709465X | ||
035 | |a (DE-599)KEP09709465X | ||
035 | |a (ORHE)9781803240688 | ||
035 | |a (DE-627-1)09709465X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20231010 | |
100 | 1 | |a Ramsay, Allan |d 1953- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine learning for emotion analysis in Python |b build AI-powered tools for analyzing emotion using natural language processing and machine learning |c Allan Ramsay, Tariq Ahmad |
250 | |a 1st edition. | ||
264 | 1 | |a Birmingham, UK |b Packt Publishing Ltd. |c 2023 | |
300 | |a 1 Online-Ressource (334 Seiten) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index | ||
520 | |a Artificial intelligence and machine learning are the technologies of the future, and this is the perfect time to tap into their potential and add value to your business. Machine Learning for Emotion Analysis in Python helps you employ these cutting-edge technologies in your customer feedback system and in turn grow your business exponentially. With this book, you'll take your foundational data science skills and grow them in the exciting realm of emotion analysis. By following a practical approach, you'll turn customer feedback into meaningful insights assisting you in making smart and data-driven business decisions. The book will help you understand how to preprocess data, build a serviceable dataset, and ensure top-notch data quality. Once you're set up for success, you'll explore complex ML techniques, uncovering the concepts of deep neural networks, support vector machines, conditional probabilities, and more. Finally, you'll acquire practical knowledge using in-depth use cases showing how the experimental results can be transformed into real-life examples and how emotion mining can help track short- and long-term changes in public opinion. By the end of this book, you'll be well-equipped to use emotion mining and analysis to drive business decisions. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Emotion recognition | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Reconnaissance des émotions | |
650 | 4 | |a Emotion recognition | |
650 | 4 | |a Machine learning | |
700 | 1 | |a Ahmad, Tariq |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781803240688/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-09709465X |
---|---|
_version_ | 1821494937229721600 |
adam_text | |
any_adam_object | |
author | Ramsay, Allan 1953- Ahmad, Tariq |
author_facet | Ramsay, Allan 1953- Ahmad, Tariq |
author_role | aut aut |
author_sort | Ramsay, Allan 1953- |
author_variant | a r ar t a ta |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)09709465X (DE-599)KEP09709465X (ORHE)9781803240688 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02884cam a22004452 4500</leader><controlfield tag="001">ZDB-30-ORH-09709465X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122054.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231030s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1803246715</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-80324-671-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781803246710</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-80324-671-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781803240688</subfield><subfield code="9">978-1-80324-068-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)09709465X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP09709465X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781803240688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)09709465X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20231010</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramsay, Allan</subfield><subfield code="d">1953-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for emotion analysis in Python</subfield><subfield code="b">build AI-powered tools for analyzing emotion using natural language processing and machine learning</subfield><subfield code="c">Allan Ramsay, Tariq Ahmad</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing Ltd.</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (334 Seiten)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial intelligence and machine learning are the technologies of the future, and this is the perfect time to tap into their potential and add value to your business. Machine Learning for Emotion Analysis in Python helps you employ these cutting-edge technologies in your customer feedback system and in turn grow your business exponentially. With this book, you'll take your foundational data science skills and grow them in the exciting realm of emotion analysis. By following a practical approach, you'll turn customer feedback into meaningful insights assisting you in making smart and data-driven business decisions. The book will help you understand how to preprocess data, build a serviceable dataset, and ensure top-notch data quality. Once you're set up for success, you'll explore complex ML techniques, uncovering the concepts of deep neural networks, support vector machines, conditional probabilities, and more. Finally, you'll acquire practical knowledge using in-depth use cases showing how the experimental results can be transformed into real-life examples and how emotion mining can help track short- and long-term changes in public opinion. By the end of this book, you'll be well-equipped to use emotion mining and analysis to drive business decisions.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Emotion recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconnaissance des émotions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Emotion recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmad, Tariq</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781803240688/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-09709465X |
illustrated | Illustrated |
indexdate | 2025-01-17T11:22:19Z |
institution | BVB |
isbn | 1803246715 9781803246710 9781803240688 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (334 Seiten) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing Ltd. |
record_format | marc |
spelling | Ramsay, Allan 1953- VerfasserIn aut Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning Allan Ramsay, Tariq Ahmad 1st edition. Birmingham, UK Packt Publishing Ltd. 2023 1 Online-Ressource (334 Seiten) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index Artificial intelligence and machine learning are the technologies of the future, and this is the perfect time to tap into their potential and add value to your business. Machine Learning for Emotion Analysis in Python helps you employ these cutting-edge technologies in your customer feedback system and in turn grow your business exponentially. With this book, you'll take your foundational data science skills and grow them in the exciting realm of emotion analysis. By following a practical approach, you'll turn customer feedback into meaningful insights assisting you in making smart and data-driven business decisions. The book will help you understand how to preprocess data, build a serviceable dataset, and ensure top-notch data quality. Once you're set up for success, you'll explore complex ML techniques, uncovering the concepts of deep neural networks, support vector machines, conditional probabilities, and more. Finally, you'll acquire practical knowledge using in-depth use cases showing how the experimental results can be transformed into real-life examples and how emotion mining can help track short- and long-term changes in public opinion. By the end of this book, you'll be well-equipped to use emotion mining and analysis to drive business decisions. Machine learning Emotion recognition Apprentissage automatique Reconnaissance des émotions Ahmad, Tariq VerfasserIn aut |
spellingShingle | Ramsay, Allan 1953- Ahmad, Tariq Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning Machine learning Emotion recognition Apprentissage automatique Reconnaissance des émotions |
title | Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning |
title_auth | Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning |
title_exact_search | Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning |
title_full | Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning Allan Ramsay, Tariq Ahmad |
title_fullStr | Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning Allan Ramsay, Tariq Ahmad |
title_full_unstemmed | Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning Allan Ramsay, Tariq Ahmad |
title_short | Machine learning for emotion analysis in Python |
title_sort | machine learning for emotion analysis in python build ai powered tools for analyzing emotion using natural language processing and machine learning |
title_sub | build AI-powered tools for analyzing emotion using natural language processing and machine learning |
topic | Machine learning Emotion recognition Apprentissage automatique Reconnaissance des émotions |
topic_facet | Machine learning Emotion recognition Apprentissage automatique Reconnaissance des émotions |
work_keys_str_mv | AT ramsayallan machinelearningforemotionanalysisinpythonbuildaipoweredtoolsforanalyzingemotionusingnaturallanguageprocessingandmachinelearning AT ahmadtariq machinelearningforemotionanalysisinpythonbuildaipoweredtoolsforanalyzingemotionusingnaturallanguageprocessingandmachinelearning |