Causal artifical intelligence: the next step in effective business AI
Discover the next major revolution in data science and AI and how it applies to your organization In Causal Artificial Intelligence: The Next Step in Effective, Efficient, and Practical AI, a team of dedicated tech executives delivers a business-focused approach based on a deep and engaging explorat...
Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Hoboken, NJ
Wiley
[2024]
|
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781394184132/?ar |
Summary: | Discover the next major revolution in data science and AI and how it applies to your organization In Causal Artificial Intelligence: The Next Step in Effective, Efficient, and Practical AI, a team of dedicated tech executives delivers a business-focused approach based on a deep and engaging exploration of the models and data used in causal AI. The book's discussions include both accessible and understandable technical detail and business context and concepts that frame causal AI in familiar business settings. Useful for both data scientists and business-side professionals, the book offers: Clear and compelling descriptions of the concept of causality and how it can benefit your organization Detailed use cases and examples that vividly demonstrate the value of causality for solving business problems Useful strategies for deciding when to use correlation-based approaches and when to use causal inference An enlightening and easy-to-understand treatment of an essential business topic, Causal Artificial Intelligence is a must-read for data scientists, subject matter experts, and business leaders seeking to familiarize themselves with a rapidly growing area of AI application and research. |
Item Description: | Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on September 11, 2023) |
Physical Description: | 1 Online-Ressource |
ISBN: | 9781394184149 139418414X 9781394184156 1394184158 9781394184132 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-097093459 | ||
003 | DE-627-1 | ||
005 | 20240228122038.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231030s2024 xx |||||o 00| ||eng c | ||
020 | |a 9781394184149 |c electronic book |9 978-1-394-18414-9 | ||
020 | |a 139418414X |c electronic book |9 1-394-18414-X | ||
020 | |a 9781394184156 |c electronic book |9 978-1-394-18415-6 | ||
020 | |a 1394184158 |c electronic book |9 1-394-18415-8 | ||
020 | |a 9781394184132 |9 978-1-394-18413-2 | ||
035 | |a (DE-627-1)097093459 | ||
035 | |a (DE-599)KEP097093459 | ||
035 | |a (ORHE)9781394184132 | ||
035 | |a (DE-627-1)097093459 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/33 |2 23/eng/20230911 | |
100 | 1 | |a Hurwitz, Judith |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Causal artifical intelligence |b the next step in effective business AI |c Judith S. Hurwitz, John K. Thompson |
264 | 1 | |a Hoboken, NJ |b Wiley |c [2024] | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on September 11, 2023) | ||
520 | |a Discover the next major revolution in data science and AI and how it applies to your organization In Causal Artificial Intelligence: The Next Step in Effective, Efficient, and Practical AI, a team of dedicated tech executives delivers a business-focused approach based on a deep and engaging exploration of the models and data used in causal AI. The book's discussions include both accessible and understandable technical detail and business context and concepts that frame causal AI in familiar business settings. Useful for both data scientists and business-side professionals, the book offers: Clear and compelling descriptions of the concept of causality and how it can benefit your organization Detailed use cases and examples that vividly demonstrate the value of causality for solving business problems Useful strategies for deciding when to use correlation-based approaches and when to use causal inference An enlightening and easy-to-understand treatment of an essential business topic, Causal Artificial Intelligence is a must-read for data scientists, subject matter experts, and business leaders seeking to familiarize themselves with a rapidly growing area of AI application and research. | ||
650 | 0 | |a Qualitative reasoning | |
650 | 4 | |a Raisonnement qualitatif | |
700 | 1 | |a Thompson, John K. |e VerfasserIn |4 aut | |
776 | 1 | |z 1394184131 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1394184131 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781394184132/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-097093459 |
---|---|
_version_ | 1829007843429187584 |
adam_text | |
any_adam_object | |
author | Hurwitz, Judith Thompson, John K. |
author_facet | Hurwitz, Judith Thompson, John K. |
author_role | aut aut |
author_sort | Hurwitz, Judith |
author_variant | j h jh j k t jk jkt |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)097093459 (DE-599)KEP097093459 (ORHE)9781394184132 |
dewey-full | 006.3/33 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/33 |
dewey-search | 006.3/33 |
dewey-sort | 16.3 233 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02869cam a22004332c 4500</leader><controlfield tag="001">ZDB-30-ORH-097093459</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122038.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231030s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781394184149</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-394-18414-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">139418414X</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-394-18414-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781394184156</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-394-18415-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1394184158</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-394-18415-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781394184132</subfield><subfield code="9">978-1-394-18413-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)097093459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP097093459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781394184132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)097093459</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/33</subfield><subfield code="2">23/eng/20230911</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hurwitz, Judith</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Causal artifical intelligence</subfield><subfield code="b">the next step in effective business AI</subfield><subfield code="c">Judith S. Hurwitz, John K. Thompson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on September 11, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Discover the next major revolution in data science and AI and how it applies to your organization In Causal Artificial Intelligence: The Next Step in Effective, Efficient, and Practical AI, a team of dedicated tech executives delivers a business-focused approach based on a deep and engaging exploration of the models and data used in causal AI. The book's discussions include both accessible and understandable technical detail and business context and concepts that frame causal AI in familiar business settings. Useful for both data scientists and business-side professionals, the book offers: Clear and compelling descriptions of the concept of causality and how it can benefit your organization Detailed use cases and examples that vividly demonstrate the value of causality for solving business problems Useful strategies for deciding when to use correlation-based approaches and when to use causal inference An enlightening and easy-to-understand treatment of an essential business topic, Causal Artificial Intelligence is a must-read for data scientists, subject matter experts, and business leaders seeking to familiarize themselves with a rapidly growing area of AI application and research.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Qualitative reasoning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raisonnement qualitatif</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thompson, John K.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1394184131</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1394184131</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781394184132/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-097093459 |
illustrated | Not Illustrated |
indexdate | 2025-04-10T09:36:44Z |
institution | BVB |
isbn | 9781394184149 139418414X 9781394184156 1394184158 9781394184132 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Wiley |
record_format | marc |
spelling | Hurwitz, Judith VerfasserIn aut Causal artifical intelligence the next step in effective business AI Judith S. Hurwitz, John K. Thompson Hoboken, NJ Wiley [2024] 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on September 11, 2023) Discover the next major revolution in data science and AI and how it applies to your organization In Causal Artificial Intelligence: The Next Step in Effective, Efficient, and Practical AI, a team of dedicated tech executives delivers a business-focused approach based on a deep and engaging exploration of the models and data used in causal AI. The book's discussions include both accessible and understandable technical detail and business context and concepts that frame causal AI in familiar business settings. Useful for both data scientists and business-side professionals, the book offers: Clear and compelling descriptions of the concept of causality and how it can benefit your organization Detailed use cases and examples that vividly demonstrate the value of causality for solving business problems Useful strategies for deciding when to use correlation-based approaches and when to use causal inference An enlightening and easy-to-understand treatment of an essential business topic, Causal Artificial Intelligence is a must-read for data scientists, subject matter experts, and business leaders seeking to familiarize themselves with a rapidly growing area of AI application and research. Qualitative reasoning Raisonnement qualitatif Thompson, John K. VerfasserIn aut 1394184131 Erscheint auch als Druck-Ausgabe 1394184131 |
spellingShingle | Hurwitz, Judith Thompson, John K. Causal artifical intelligence the next step in effective business AI Qualitative reasoning Raisonnement qualitatif |
title | Causal artifical intelligence the next step in effective business AI |
title_auth | Causal artifical intelligence the next step in effective business AI |
title_exact_search | Causal artifical intelligence the next step in effective business AI |
title_full | Causal artifical intelligence the next step in effective business AI Judith S. Hurwitz, John K. Thompson |
title_fullStr | Causal artifical intelligence the next step in effective business AI Judith S. Hurwitz, John K. Thompson |
title_full_unstemmed | Causal artifical intelligence the next step in effective business AI Judith S. Hurwitz, John K. Thompson |
title_short | Causal artifical intelligence |
title_sort | causal artifical intelligence the next step in effective business ai |
title_sub | the next step in effective business AI |
topic | Qualitative reasoning Raisonnement qualitatif |
topic_facet | Qualitative reasoning Raisonnement qualitatif |
work_keys_str_mv | AT hurwitzjudith causalartificalintelligencethenextstepineffectivebusinessai AT thompsonjohnk causalartificalintelligencethenextstepineffectivebusinessai |