Machine learning engineering with Python: manage the lifecycle of machine learning models using MLOps with practical examples
The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to he...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham, UK
Packt Publishing Ltd.
2023
|
Ausgabe: | Second edition. |
Schriftenreihe: | Expert insight
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781837631964/?ar |
Zusammenfassung: | The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning. |
Beschreibung: | Includes index |
Umfang: | 1 Online-Ressource (462 Seiten) illustrations. |
ISBN: | 9781837634354 1837634351 9781837631964 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-096663952 | ||
003 | DE-627-1 | ||
005 | 20240228122040.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231006s2023 xx |||||o 00| ||eng c | ||
020 | |a 9781837634354 |c electronic book |9 978-1-83763-435-4 | ||
020 | |a 1837634351 |c electronic book |9 1-83763-435-1 | ||
020 | |a 9781837631964 |9 978-1-83763-196-4 | ||
035 | |a (DE-627-1)096663952 | ||
035 | |a (DE-599)KEP096663952 | ||
035 | |a (ORHE)9781837631964 | ||
035 | |a (DE-627-1)096663952 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.13/3 |2 23/eng/20230906 | |
100 | 1 | |a McMahon, Andrew P. |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine learning engineering with Python |b manage the lifecycle of machine learning models using MLOps with practical examples |c Andrew P. McMahon ; foreword by Adi Polak |
250 | |a Second edition. | ||
264 | 1 | |a Birmingham, UK |b Packt Publishing Ltd. |c 2023 | |
300 | |a 1 Online-Ressource (462 Seiten) |b illustrations. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Expert insight | |
500 | |a Includes index | ||
520 | |a The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Data mining | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Exploration de données (Informatique) | |
700 | 1 | |a Polak, Adi |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781837631964/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-096663952 |
---|---|
_version_ | 1821494937873547264 |
adam_text | |
any_adam_object | |
author | McMahon, Andrew P. |
author2 | Polak, Adi |
author2_role | ctb |
author2_variant | a p ap |
author_facet | McMahon, Andrew P. Polak, Adi |
author_role | aut |
author_sort | McMahon, Andrew P. |
author_variant | a p m ap apm |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)096663952 (DE-599)KEP096663952 (ORHE)9781837631964 |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03017cam a22004572 4500</leader><controlfield tag="001">ZDB-30-ORH-096663952</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122040.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231006s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781837634354</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-83763-435-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1837634351</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-83763-435-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781837631964</subfield><subfield code="9">978-1-83763-196-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)096663952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP096663952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781837631964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)096663952</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23/eng/20230906</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McMahon, Andrew P.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning engineering with Python</subfield><subfield code="b">manage the lifecycle of machine learning models using MLOps with practical examples</subfield><subfield code="c">Andrew P. McMahon ; foreword by Adi Polak</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing Ltd.</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (462 Seiten)</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Expert insight</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polak, Adi</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781837631964/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-096663952 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:22:19Z |
institution | BVB |
isbn | 9781837634354 1837634351 9781837631964 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (462 Seiten) illustrations. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing Ltd. |
record_format | marc |
series2 | Expert insight |
spelling | McMahon, Andrew P. VerfasserIn aut Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Andrew P. McMahon ; foreword by Adi Polak Second edition. Birmingham, UK Packt Publishing Ltd. 2023 1 Online-Ressource (462 Seiten) illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Expert insight Includes index The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning. Machine learning Python (Computer program language) Data mining Apprentissage automatique Python (Langage de programmation) Exploration de données (Informatique) Polak, Adi MitwirkendeR ctb |
spellingShingle | McMahon, Andrew P. Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Machine learning Python (Computer program language) Data mining Apprentissage automatique Python (Langage de programmation) Exploration de données (Informatique) |
title | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples |
title_auth | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples |
title_exact_search | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples |
title_full | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Andrew P. McMahon ; foreword by Adi Polak |
title_fullStr | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Andrew P. McMahon ; foreword by Adi Polak |
title_full_unstemmed | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Andrew P. McMahon ; foreword by Adi Polak |
title_short | Machine learning engineering with Python |
title_sort | machine learning engineering with python manage the lifecycle of machine learning models using mlops with practical examples |
title_sub | manage the lifecycle of machine learning models using MLOps with practical examples |
topic | Machine learning Python (Computer program language) Data mining Apprentissage automatique Python (Langage de programmation) Exploration de données (Informatique) |
topic_facet | Machine learning Python (Computer program language) Data mining Apprentissage automatique Python (Langage de programmation) Exploration de données (Informatique) |
work_keys_str_mv | AT mcmahonandrewp machinelearningengineeringwithpythonmanagethelifecycleofmachinelearningmodelsusingmlopswithpracticalexamples AT polakadi machinelearningengineeringwithpythonmanagethelifecycleofmachinelearningmodelsusingmlopswithpracticalexamples |