Machine learning, big data, and IoT for medical informatics:
Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field...
Saved in:
Other Authors: | , , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
[Erscheinungsort nicht ermittelbar]
Academic Press
2021
|
Series: | Intelligent data centric systems
|
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9780128217818/?ar |
Summary: | Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT. Explains the uses of CNN, Deep Learning and extreme machine learning concepts for the design and development of predictive diagnostic systems. Includes several privacy preservation techniques for medical data. Presents the integration of Internet of Things with predictive diagnostic systems for disease diagnosis. Offers case studies and applications relating to machine learning, big data, and health care analysis. |
Physical Description: | 1 Online-Ressource. |
ISBN: | 9780128217818 0128217812 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-081558864 | ||
003 | DE-627-1 | ||
005 | 20240228121357.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220815s2021 xx |||||o 00| ||eng c | ||
020 | |a 9780128217818 |c electronic book |9 978-0-12-821781-8 | ||
020 | |a 0128217812 |c electronic book |9 0-12-821781-2 | ||
035 | |a (DE-627-1)081558864 | ||
035 | |a (DE-599)KEP081558864 | ||
035 | |a (ORHE)9780128217818 | ||
035 | |a (DE-627-1)081558864 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a UYQM |2 bicssc | |
082 | 0 | |a 610.28563 |2 23 | |
245 | 0 | 0 | |a Machine learning, big data, and IoT for medical informatics |c edited by Pardeep Kumar, Yugal Kumar and Mohamed A. Tawhid |
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b Academic Press |c 2021 | |
300 | |a 1 Online-Ressource. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Intelligent data centric systems | |
520 | |a Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT. Explains the uses of CNN, Deep Learning and extreme machine learning concepts for the design and development of predictive diagnostic systems. Includes several privacy preservation techniques for medical data. Presents the integration of Internet of Things with predictive diagnostic systems for disease diagnosis. Offers case studies and applications relating to machine learning, big data, and health care analysis. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Medical informatics | |
650 | 0 | |a Artificial intelligence |x Medical applications | |
650 | 0 | |a Medicine |x Data processing | |
650 | 2 | |a Medical Informatics | |
650 | 2 | |a Medical Informatics Applications | |
650 | 2 | |a Machine Learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Médecine ; Informatique | |
650 | 4 | |a Intelligence artificielle en médecine | |
650 | 4 | |a Medicine ; Data processing | |
650 | 4 | |a Artificial intelligence ; Medical applications | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Medical informatics | |
700 | 1 | |a Kumar, Pardeep |d 1976- |e MitwirkendeR |4 ctb | |
700 | 1 | |a Kumar, Yugal |e MitwirkendeR |4 ctb | |
700 | 1 | |a Tawhid, Mohamed A. |e MitwirkendeR |4 ctb | |
776 | 1 | |z 0128217774 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0128217774 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780128217818/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-081558864 |
---|---|
_version_ | 1831287038627807232 |
adam_text | |
any_adam_object | |
author2 | Kumar, Pardeep 1976- Kumar, Yugal Tawhid, Mohamed A. |
author2_role | ctb ctb ctb |
author2_variant | p k pk y k yk m a t ma mat |
author_facet | Kumar, Pardeep 1976- Kumar, Yugal Tawhid, Mohamed A. |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)081558864 (DE-599)KEP081558864 (ORHE)9780128217818 |
dewey-full | 610.28563 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610.28563 |
dewey-search | 610.28563 |
dewey-sort | 3610.28563 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03496cam a22005892c 4500</leader><controlfield tag="001">ZDB-30-ORH-081558864</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121357.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220815s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128217818</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-0-12-821781-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128217812</subfield><subfield code="c">electronic book</subfield><subfield code="9">0-12-821781-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)081558864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP081558864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780128217818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)081558864</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQM</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610.28563</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Machine learning, big data, and IoT for medical informatics</subfield><subfield code="c">edited by Pardeep Kumar, Yugal Kumar and Mohamed A. Tawhid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Intelligent data centric systems</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT. Explains the uses of CNN, Deep Learning and extreme machine learning concepts for the design and development of predictive diagnostic systems. Includes several privacy preservation techniques for medical data. Presents the integration of Internet of Things with predictive diagnostic systems for disease diagnosis. Offers case studies and applications relating to machine learning, big data, and health care analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Medical informatics</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Medical applications</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Medicine</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Medical Informatics</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Medical Informatics Applications</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Médecine ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle en médecine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medicine ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence ; Medical applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical informatics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Pardeep</subfield><subfield code="d">1976-</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Yugal</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tawhid, Mohamed A.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">0128217774</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0128217774</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780128217818/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-081558864 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:23:34Z |
institution | BVB |
isbn | 9780128217818 0128217812 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Academic Press |
record_format | marc |
series2 | Intelligent data centric systems |
spelling | Machine learning, big data, and IoT for medical informatics edited by Pardeep Kumar, Yugal Kumar and Mohamed A. Tawhid [Erscheinungsort nicht ermittelbar] Academic Press 2021 1 Online-Ressource. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Intelligent data centric systems Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT. Explains the uses of CNN, Deep Learning and extreme machine learning concepts for the design and development of predictive diagnostic systems. Includes several privacy preservation techniques for medical data. Presents the integration of Internet of Things with predictive diagnostic systems for disease diagnosis. Offers case studies and applications relating to machine learning, big data, and health care analysis. Machine learning Medical informatics Artificial intelligence Medical applications Medicine Data processing Medical Informatics Medical Informatics Applications Machine Learning Apprentissage automatique Médecine ; Informatique Intelligence artificielle en médecine Medicine ; Data processing Artificial intelligence ; Medical applications Kumar, Pardeep 1976- MitwirkendeR ctb Kumar, Yugal MitwirkendeR ctb Tawhid, Mohamed A. MitwirkendeR ctb 0128217774 Erscheint auch als Druck-Ausgabe 0128217774 |
spellingShingle | Machine learning, big data, and IoT for medical informatics Machine learning Medical informatics Artificial intelligence Medical applications Medicine Data processing Medical Informatics Medical Informatics Applications Machine Learning Apprentissage automatique Médecine ; Informatique Intelligence artificielle en médecine Medicine ; Data processing Artificial intelligence ; Medical applications |
title | Machine learning, big data, and IoT for medical informatics |
title_auth | Machine learning, big data, and IoT for medical informatics |
title_exact_search | Machine learning, big data, and IoT for medical informatics |
title_full | Machine learning, big data, and IoT for medical informatics edited by Pardeep Kumar, Yugal Kumar and Mohamed A. Tawhid |
title_fullStr | Machine learning, big data, and IoT for medical informatics edited by Pardeep Kumar, Yugal Kumar and Mohamed A. Tawhid |
title_full_unstemmed | Machine learning, big data, and IoT for medical informatics edited by Pardeep Kumar, Yugal Kumar and Mohamed A. Tawhid |
title_short | Machine learning, big data, and IoT for medical informatics |
title_sort | machine learning big data and iot for medical informatics |
topic | Machine learning Medical informatics Artificial intelligence Medical applications Medicine Data processing Medical Informatics Medical Informatics Applications Machine Learning Apprentissage automatique Médecine ; Informatique Intelligence artificielle en médecine Medicine ; Data processing Artificial intelligence ; Medical applications |
topic_facet | Machine learning Medical informatics Artificial intelligence Medical applications Medicine Data processing Medical Informatics Medical Informatics Applications Machine Learning Apprentissage automatique Médecine ; Informatique Intelligence artificielle en médecine Medicine ; Data processing Artificial intelligence ; Medical applications |
work_keys_str_mv | AT kumarpardeep machinelearningbigdataandiotformedicalinformatics AT kumaryugal machinelearningbigdataandiotformedicalinformatics AT tawhidmohameda machinelearningbigdataandiotformedicalinformatics |