Natural language processing with transformers: building language applications with Hugging Face
Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and...
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media
2023
|
Ausgabe: | Revised edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781098136789/?ar |
Zusammenfassung: | Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments. |
Beschreibung: | Description based on online resource; title from digital title page (viewed on April 04, 2023) |
Umfang: | 1 Online-Ressource |
ISBN: | 1098136764 9781098136765 9781098136758 1098136756 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-080712118 | ||
003 | DE-627-1 | ||
005 | 20240228121708.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220720s2023 xx |||||o 00| ||eng c | ||
020 | |a 1098136764 |c electronic book |9 1-0981-3676-4 | ||
020 | |a 9781098136765 |c electronic book |9 978-1-0981-3676-5 | ||
020 | |a 9781098136758 |c electronic book |9 978-1-0981-3675-8 | ||
020 | |a 1098136756 |c electronic book |9 1-0981-3675-6 | ||
035 | |a (DE-627-1)080712118 | ||
035 | |a (DE-599)KEP080712118 | ||
035 | |a (ORHE)9781098136789 | ||
035 | |a (DE-627-1)080712118 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/5 |2 23/eng/20220602 | |
100 | 1 | |a Tunstall, Lewis |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Natural language processing with transformers |b building language applications with Hugging Face |c Lewis Tunstall, Leandro von Werra & Thomas Wolf |
250 | |a Revised edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media |c 2023 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from digital title page (viewed on April 04, 2023) | ||
520 | |a Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments. | ||
650 | 0 | |a Natural language processing (Computer science) | |
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Cloud computing | |
650 | 4 | |a Traitement automatique des langues naturelles | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Infonuagique | |
650 | 4 | |a Cloud computing | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Natural language processing (Computer science) | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Werra, Leandro von |e VerfasserIn |4 aut | |
700 | 1 | |a Wolf, Thomas |e VerfasserIn |4 aut | |
776 | 1 | |z 9781098136796 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781098136796 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098136789/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-080712118 |
---|---|
_version_ | 1831287038848008192 |
adam_text | |
any_adam_object | |
author | Tunstall, Lewis Werra, Leandro von Wolf, Thomas |
author_facet | Tunstall, Lewis Werra, Leandro von Wolf, Thomas |
author_role | aut aut aut |
author_sort | Tunstall, Lewis |
author_variant | l t lt l v w lv lvw t w tw |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)080712118 (DE-599)KEP080712118 (ORHE)9781098136789 |
dewey-full | 006.3/5 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/5 |
dewey-search | 006.3/5 |
dewey-sort | 16.3 15 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Revised edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03542cam a22005892c 4500</leader><controlfield tag="001">ZDB-30-ORH-080712118</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121708.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220720s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098136764</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-0981-3676-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098136765</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-0981-3676-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098136758</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-0981-3675-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098136756</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-0981-3675-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)080712118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP080712118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098136789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)080712118</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/5</subfield><subfield code="2">23/eng/20220602</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tunstall, Lewis</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural language processing with transformers</subfield><subfield code="b">building language applications with Hugging Face</subfield><subfield code="c">Lewis Tunstall, Leandro von Werra & Thomas Wolf</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Revised edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from digital title page (viewed on April 04, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infonuagique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Werra, Leandro von</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolf, Thomas</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781098136796</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781098136796</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098136789/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-080712118 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:23:34Z |
institution | BVB |
isbn | 1098136764 9781098136765 9781098136758 1098136756 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Tunstall, Lewis VerfasserIn aut Natural language processing with transformers building language applications with Hugging Face Lewis Tunstall, Leandro von Werra & Thomas Wolf Revised edition. Sebastopol, CA O'Reilly Media 2023 ©2022 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Description based on online resource; title from digital title page (viewed on April 04, 2023) Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments. Natural language processing (Computer science) Python (Computer program language) Machine learning Cloud computing Traitement automatique des langues naturelles Python (Langage de programmation) Apprentissage automatique Infonuagique Werra, Leandro von VerfasserIn aut Wolf, Thomas VerfasserIn aut 9781098136796 Erscheint auch als Druck-Ausgabe 9781098136796 |
spellingShingle | Tunstall, Lewis Werra, Leandro von Wolf, Thomas Natural language processing with transformers building language applications with Hugging Face Natural language processing (Computer science) Python (Computer program language) Machine learning Cloud computing Traitement automatique des langues naturelles Python (Langage de programmation) Apprentissage automatique Infonuagique |
title | Natural language processing with transformers building language applications with Hugging Face |
title_auth | Natural language processing with transformers building language applications with Hugging Face |
title_exact_search | Natural language processing with transformers building language applications with Hugging Face |
title_full | Natural language processing with transformers building language applications with Hugging Face Lewis Tunstall, Leandro von Werra & Thomas Wolf |
title_fullStr | Natural language processing with transformers building language applications with Hugging Face Lewis Tunstall, Leandro von Werra & Thomas Wolf |
title_full_unstemmed | Natural language processing with transformers building language applications with Hugging Face Lewis Tunstall, Leandro von Werra & Thomas Wolf |
title_short | Natural language processing with transformers |
title_sort | natural language processing with transformers building language applications with hugging face |
title_sub | building language applications with Hugging Face |
topic | Natural language processing (Computer science) Python (Computer program language) Machine learning Cloud computing Traitement automatique des langues naturelles Python (Langage de programmation) Apprentissage automatique Infonuagique |
topic_facet | Natural language processing (Computer science) Python (Computer program language) Machine learning Cloud computing Traitement automatique des langues naturelles Python (Langage de programmation) Apprentissage automatique Infonuagique |
work_keys_str_mv | AT tunstalllewis naturallanguageprocessingwithtransformersbuildinglanguageapplicationswithhuggingface AT werraleandrovon naturallanguageprocessingwithtransformersbuildinglanguageapplicationswithhuggingface AT wolfthomas naturallanguageprocessingwithtransformersbuildinglanguageapplicationswithhuggingface |