PyTorch to fastai de hajimeru dīpu rāningu: enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch :
PyTorchとfastaiではじめるディープラーニング : エンジニアのためのAIアプリケーション開発 /
"Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accompli...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Japanisch |
Veröffentlicht: |
Tōkyō-to Shinjuku-ku
Orairī Japan
2021
|
Ausgabe: | Shohan. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9784873119427/?ar |
Zusammenfassung: | "Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions" -- |
Umfang: | 1 Online-Ressource (584 Seiten) |
ISBN: | 9784873119427 4873119421 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-078670918 | ||
003 | DE-627-1 | ||
005 | 20240228121658.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220609s2021 xx |||||o 00| ||jpn c | ||
020 | |a 9784873119427 |c electronic bk. |9 978-4-87311-942-7 | ||
020 | |a 4873119421 |c electronic bk. |9 4-87311-942-1 | ||
035 | |a (DE-627-1)078670918 | ||
035 | |a (DE-599)KEP078670918 | ||
035 | |a (ORHE)9784873119427 | ||
035 | |a (DE-627-1)078670918 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a jpn | ||
082 | 0 | |a 006.312 |2 23/eng/20220510 | |
100 | 1 | |a Howard, Jeremy |e VerfasserIn |4 aut | |
240 | 1 | 0 | |a Deep learning for coders with fastai and PyTorch |
245 | 1 | 0 | |6 880-01 |a PyTorch to fastai de hajimeru dīpu rāningu |b enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : |c Howard Jeremy, Gugger Sylvain cho ; Nakada Hidemoto yaku = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger |
246 | 3 | 1 | |a Deep learning for coders with fastai and PyTorch : |
246 | 3 | 3 | |6 880-02 |a Dīpu rāningu |
250 | |6 880-03 |a Shohan. | ||
264 | 1 | |6 880-04 |a Tōkyō-to Shinjuku-ku |b Orairī Japan |c 2021 | |
300 | |a 1 Online-Ressource (584 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a "Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions" -- | ||
650 | 0 | |a Deep learning (Machine learning) | |
650 | 0 | |a Data mining | |
650 | 0 | |a Natural language processing (Computer science) | |
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Apprentissage profond | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Traitement automatique des langues naturelles | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Data mining | |
650 | 4 | |a Deep learning (Machine learning) | |
650 | 4 | |a Natural language processing (Computer science) | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Gugger, Sylvain |e VerfasserIn |4 aut | |
700 | 1 | |a Nakada, Hidemoto |e ÜbersetzerIn |4 trl | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9784873119427/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
880 | 1 | 0 | |6 245-01/Chin |a PyTorchとfastaiではじめるディープラーニング : |b エンジニアのためのAIアプリケーション開発 / |c Jeremy Howard, Sylvain Gugger著 ; 中田秀基訳 = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger. |
880 | 3 | 3 | |6 246-02/Chin |a ディープラーニング |
880 | |6 250-03/Chin |a 初版. | ||
880 | 1 | |6 264-04/Chin |a 東京都新宿区 |b オライリー・ジャパン |c 2021 | |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-078670918 |
---|---|
_version_ | 1821494820960468992 |
adam_text | |
any_adam_object | |
author | Howard, Jeremy Gugger, Sylvain |
author2 | Nakada, Hidemoto |
author2_role | trl |
author2_variant | h n hn |
author_facet | Howard, Jeremy Gugger, Sylvain Nakada, Hidemoto |
author_role | aut aut |
author_sort | Howard, Jeremy |
author_variant | j h jh s g sg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)078670918 (DE-599)KEP078670918 (ORHE)9784873119427 |
dewey-full | 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.312 |
dewey-search | 006.312 |
dewey-sort | 16.312 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Shohan. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03430cam a22006012 4500</leader><controlfield tag="001">ZDB-30-ORH-078670918</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220609s2021 xx |||||o 00| ||jpn c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9784873119427</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-4-87311-942-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">4873119421</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">4-87311-942-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)078670918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP078670918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9784873119427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)078670918</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">jpn</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield><subfield code="2">23/eng/20220510</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Howard, Jeremy</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Deep learning for coders with fastai and PyTorch</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="6">880-01</subfield><subfield code="a">PyTorch to fastai de hajimeru dīpu rāningu</subfield><subfield code="b">enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch :</subfield><subfield code="c">Howard Jeremy, Gugger Sylvain cho ; Nakada Hidemoto yaku = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger</subfield></datafield><datafield tag="246" ind1="3" ind2="1"><subfield code="a">Deep learning for coders with fastai and PyTorch :</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="6">880-02</subfield><subfield code="a">Dīpu rāningu</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="6">880-03</subfield><subfield code="a">Shohan.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="6">880-04</subfield><subfield code="a">Tōkyō-to Shinjuku-ku</subfield><subfield code="b">Orairī Japan</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (584 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions" --</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Deep learning (Machine learning)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage profond</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning (Machine learning)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gugger, Sylvain</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakada, Hidemoto</subfield><subfield code="e">ÜbersetzerIn</subfield><subfield code="4">trl</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9784873119427/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="1" ind2="0"><subfield code="6">245-01/Chin</subfield><subfield code="a">PyTorchとfastaiではじめるディープラーニング :</subfield><subfield code="b">エンジニアのためのAIアプリケーション開発 /</subfield><subfield code="c">Jeremy Howard, Sylvain Gugger著 ; 中田秀基訳 = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger.</subfield></datafield><datafield tag="880" ind1="3" ind2="3"><subfield code="6">246-02/Chin</subfield><subfield code="a">ディープラーニング</subfield></datafield><datafield tag="880" ind1=" " ind2=" "><subfield code="6">250-03/Chin</subfield><subfield code="a">初版.</subfield></datafield><datafield tag="880" ind1=" " ind2="1"><subfield code="6">264-04/Chin</subfield><subfield code="a">東京都新宿区</subfield><subfield code="b">オライリー・ジャパン</subfield><subfield code="c">2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-078670918 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:28Z |
institution | BVB |
isbn | 9784873119427 4873119421 |
language | Japanese |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (584 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Orairī Japan |
record_format | marc |
spelling | Howard, Jeremy VerfasserIn aut Deep learning for coders with fastai and PyTorch 880-01 PyTorch to fastai de hajimeru dīpu rāningu enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : Howard Jeremy, Gugger Sylvain cho ; Nakada Hidemoto yaku = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger Deep learning for coders with fastai and PyTorch : 880-02 Dīpu rāningu 880-03 Shohan. 880-04 Tōkyō-to Shinjuku-ku Orairī Japan 2021 1 Online-Ressource (584 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier "Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions" -- Deep learning (Machine learning) Data mining Natural language processing (Computer science) Python (Computer program language) Apprentissage profond Exploration de données (Informatique) Traitement automatique des langues naturelles Python (Langage de programmation) Gugger, Sylvain VerfasserIn aut Nakada, Hidemoto ÜbersetzerIn trl 245-01/Chin PyTorchとfastaiではじめるディープラーニング : エンジニアのためのAIアプリケーション開発 / Jeremy Howard, Sylvain Gugger著 ; 中田秀基訳 = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger. 246-02/Chin ディープラーニング 250-03/Chin 初版. 264-04/Chin 東京都新宿区 オライリー・ジャパン 2021 |
spellingShingle | Howard, Jeremy Gugger, Sylvain PyTorch to fastai de hajimeru dīpu rāningu enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : Deep learning (Machine learning) Data mining Natural language processing (Computer science) Python (Computer program language) Apprentissage profond Exploration de données (Informatique) Traitement automatique des langues naturelles Python (Langage de programmation) |
title | PyTorch to fastai de hajimeru dīpu rāningu enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : |
title_alt | Deep learning for coders with fastai and PyTorch Deep learning for coders with fastai and PyTorch : Dīpu rāningu |
title_auth | PyTorch to fastai de hajimeru dīpu rāningu enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : |
title_exact_search | PyTorch to fastai de hajimeru dīpu rāningu enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : |
title_full | PyTorch to fastai de hajimeru dīpu rāningu enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : Howard Jeremy, Gugger Sylvain cho ; Nakada Hidemoto yaku = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger |
title_fullStr | PyTorch to fastai de hajimeru dīpu rāningu enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : Howard Jeremy, Gugger Sylvain cho ; Nakada Hidemoto yaku = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger |
title_full_unstemmed | PyTorch to fastai de hajimeru dīpu rāningu enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : Howard Jeremy, Gugger Sylvain cho ; Nakada Hidemoto yaku = Deep learning for coders with fastai and PyTorch : AI applications without a PhD / Jeremy Howard and Sylvain Gugger |
title_short | PyTorch to fastai de hajimeru dīpu rāningu |
title_sort | pytorch to fastai de hajimeru dipu raningu enjinia no tame no ai apurikeshon kaihatsu deep learning for coders with fastai and pytorch |
title_sub | enjinia no tame no AI apurikēshon kaihatsu / = Deep learning for coders with fastai and PyTorch : |
topic | Deep learning (Machine learning) Data mining Natural language processing (Computer science) Python (Computer program language) Apprentissage profond Exploration de données (Informatique) Traitement automatique des langues naturelles Python (Langage de programmation) |
topic_facet | Deep learning (Machine learning) Data mining Natural language processing (Computer science) Python (Computer program language) Apprentissage profond Exploration de données (Informatique) Traitement automatique des langues naturelles Python (Langage de programmation) |
work_keys_str_mv | AT howardjeremy deeplearningforcoderswithfastaiandpytorch AT guggersylvain deeplearningforcoderswithfastaiandpytorch AT nakadahidemoto deeplearningforcoderswithfastaiandpytorch AT howardjeremy pytorchtofastaidehajimerudipuraninguenjinianotamenoaiapurikeshonkaihatsudeeplearningforcoderswithfastaiandpytorch AT guggersylvain pytorchtofastaidehajimerudipuraninguenjinianotamenoaiapurikeshonkaihatsudeeplearningforcoderswithfastaiandpytorch AT nakadahidemoto pytorchtofastaidehajimerudipuraninguenjinianotamenoaiapurikeshonkaihatsudeeplearningforcoderswithfastaiandpytorch AT howardjeremy dipuraningu AT guggersylvain dipuraningu AT nakadahidemoto dipuraningu |