Spark programming in Python for beginners with Apache Spark 3:
Build data engineering solutions with Spark programming in Python About This Video Build your own data engineering solutions using Spark structured API in Python Gain an in-depth understanding of the Apache Hadoop architecture, ecosystem, and practices Learn to apply Spark programming basics In Deta...
Saved in:
Corporate Author: | |
---|---|
Other Authors: | |
Format: | Electronic Video |
Language: | English |
Published: |
[Place of publication not identified]
Packt Publishing
[2022]
|
Edition: | [First edition]. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781803246161/?ar |
Summary: | Build data engineering solutions with Spark programming in Python About This Video Build your own data engineering solutions using Spark structured API in Python Gain an in-depth understanding of the Apache Hadoop architecture, ecosystem, and practices Learn to apply Spark programming basics In Detail If you are looking to expand your knowledge in data engineering or want to level up your portfolio by adding Spark programming to your skillset, then you are in the right place. This course will help you understand Spark programming and apply that knowledge to build data engineering solutions. This course is example-driven and follows a working session-like approach. We will be taking a live coding approach and explaining all the concepts needed along the way. In this course, we will start with a quick introduction to Apache Spark, then set up our environment by installing and using Apache Spark. Next, we will learn about Spark execution model and architecture, and about Spark programming model and developer experience. Next, we will cover Spark structured API foundation and then move towards Spark data sources and sinks. Then we will cover Spark Dataframe and dataset transformations. We will also cover aggregations in Apache Spark and finally, we will cover Spark Dataframe joins. By the end of this course, you will be able to build data engineering solutions using Spark structured API in Python. Audience This course is designed for software engineers willing to develop a data engineering pipeline and application using Apache Spark; for data architects and data engineers who are responsible for designing and building the organization's data-centric infrastructure, for managers and architects who do not directly work with Spark implementation but work with the people who implement Apache Spark at the ground level. This course does not require any prior knowledge of Apache Spark or Hadoop; only programming knowledge using Python programming language is required. |
Item Description: | "Updated in February 2022. - "ScholarNest.". - Online resource; title from title details screen (O'Reilly, viewed March 10, 2022) |
Physical Description: | 1 Online-Ressource (1 video file (6 hr., 37 min.)) sound, color. |
Staff View
MARC
LEADER | 00000cgm a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-077382803 | ||
003 | DE-627-1 | ||
005 | 20240228121622.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 220405s2022 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)077382803 | ||
035 | |a (DE-599)KEP077382803 | ||
035 | |a (ORHE)9781803246161 | ||
035 | |a (DE-627-1)077382803 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.13/3 |2 23 | |
245 | 0 | 0 | |a Spark programming in Python for beginners with Apache Spark 3 |
250 | |a [First edition]. | ||
264 | 1 | |a [Place of publication not identified] |b Packt Publishing |c [2022] | |
300 | |a 1 Online-Ressource (1 video file (6 hr., 37 min.)) |b sound, color. | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a "Updated in February 2022. - "ScholarNest.". - Online resource; title from title details screen (O'Reilly, viewed March 10, 2022) | ||
520 | |a Build data engineering solutions with Spark programming in Python About This Video Build your own data engineering solutions using Spark structured API in Python Gain an in-depth understanding of the Apache Hadoop architecture, ecosystem, and practices Learn to apply Spark programming basics In Detail If you are looking to expand your knowledge in data engineering or want to level up your portfolio by adding Spark programming to your skillset, then you are in the right place. This course will help you understand Spark programming and apply that knowledge to build data engineering solutions. This course is example-driven and follows a working session-like approach. We will be taking a live coding approach and explaining all the concepts needed along the way. In this course, we will start with a quick introduction to Apache Spark, then set up our environment by installing and using Apache Spark. Next, we will learn about Spark execution model and architecture, and about Spark programming model and developer experience. Next, we will cover Spark structured API foundation and then move towards Spark data sources and sinks. Then we will cover Spark Dataframe and dataset transformations. We will also cover aggregations in Apache Spark and finally, we will cover Spark Dataframe joins. By the end of this course, you will be able to build data engineering solutions using Spark structured API in Python. Audience This course is designed for software engineers willing to develop a data engineering pipeline and application using Apache Spark; for data architects and data engineers who are responsible for designing and building the organization's data-centric infrastructure, for managers and architects who do not directly work with Spark implementation but work with the people who implement Apache Spark at the ground level. This course does not require any prior knowledge of Apache Spark or Hadoop; only programming knowledge using Python programming language is required. | ||
630 | 2 | 0 | |a Spark (Electronic resource : Apache Software Foundation) |
650 | 0 | |a Computer programming | |
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Spark (Electronic resource : Apache Software Foundation) |0 (OCoLC)fst01938143 | |
650 | 4 | |a Programmation (Informatique) | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a computer programming | |
650 | 4 | |a Computer programming |0 (OCoLC)fst00872390 | |
650 | 4 | |a Python (Computer program language) |0 (OCoLC)fst01084736 | |
650 | 4 | |a Instructional films |0 (OCoLC)fst01726236 | |
650 | 4 | |a Internet videos |0 (OCoLC)fst01750214 | |
650 | 4 | |a Nonfiction films |0 (OCoLC)fst01710269 | |
650 | 4 | |a Instructional films | |
650 | 4 | |a Nonfiction films | |
650 | 4 | |a Internet videos | |
650 | 4 | |a Films de formation | |
650 | 4 | |a Films autres que de fiction | |
650 | 4 | |a Vidéos sur Internet | |
655 | 2 | |a Webcast | |
700 | 1 | |a Pandey, Prashant Kumar |e MitwirkendeR |4 ctb | |
710 | 2 | |a Packt Publishing. |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781803246161/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-077382803 |
---|---|
_version_ | 1831287158071099392 |
adam_text | |
any_adam_object | |
author2 | Pandey, Prashant Kumar |
author2_role | ctb |
author2_variant | p k p pk pkp |
author_corporate | Packt Publishing |
author_corporate_role | ctb |
author_facet | Pandey, Prashant Kumar Packt Publishing |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)077382803 (DE-599)KEP077382803 (ORHE)9781803246161 |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04239cgm a22005892c 4500</leader><controlfield tag="001">ZDB-30-ORH-077382803</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121622.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220405s2022 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)077382803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP077382803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781803246161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)077382803</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Spark programming in Python for beginners with Apache Spark 3</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 video file (6 hr., 37 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Updated in February 2022. - "ScholarNest.". - Online resource; title from title details screen (O'Reilly, viewed March 10, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Build data engineering solutions with Spark programming in Python About This Video Build your own data engineering solutions using Spark structured API in Python Gain an in-depth understanding of the Apache Hadoop architecture, ecosystem, and practices Learn to apply Spark programming basics In Detail If you are looking to expand your knowledge in data engineering or want to level up your portfolio by adding Spark programming to your skillset, then you are in the right place. This course will help you understand Spark programming and apply that knowledge to build data engineering solutions. This course is example-driven and follows a working session-like approach. We will be taking a live coding approach and explaining all the concepts needed along the way. In this course, we will start with a quick introduction to Apache Spark, then set up our environment by installing and using Apache Spark. Next, we will learn about Spark execution model and architecture, and about Spark programming model and developer experience. Next, we will cover Spark structured API foundation and then move towards Spark data sources and sinks. Then we will cover Spark Dataframe and dataset transformations. We will also cover aggregations in Apache Spark and finally, we will cover Spark Dataframe joins. By the end of this course, you will be able to build data engineering solutions using Spark structured API in Python. Audience This course is designed for software engineers willing to develop a data engineering pipeline and application using Apache Spark; for data architects and data engineers who are responsible for designing and building the organization's data-centric infrastructure, for managers and architects who do not directly work with Spark implementation but work with the people who implement Apache Spark at the ground level. This course does not require any prior knowledge of Apache Spark or Hadoop; only programming knowledge using Python programming language is required.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">Spark (Electronic resource : Apache Software Foundation)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spark (Electronic resource : Apache Software Foundation)</subfield><subfield code="0">(OCoLC)fst01938143</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programmation (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer programming</subfield><subfield code="0">(OCoLC)fst00872390</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">(OCoLC)fst01084736</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield><subfield code="0">(OCoLC)fst01726236</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield><subfield code="0">(OCoLC)fst01750214</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield><subfield code="0">(OCoLC)fst01710269</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films de formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films autres que de fiction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="655" ind1=" " ind2="2"><subfield code="a">Webcast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pandey, Prashant Kumar</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Packt Publishing.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781803246161/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
genre | Webcast |
genre_facet | Webcast |
id | ZDB-30-ORH-077382803 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:25:28Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 video file (6 hr., 37 min.)) sound, color. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Packt Publishing |
record_format | marc |
spelling | Spark programming in Python for beginners with Apache Spark 3 [First edition]. [Place of publication not identified] Packt Publishing [2022] 1 Online-Ressource (1 video file (6 hr., 37 min.)) sound, color. zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier "Updated in February 2022. - "ScholarNest.". - Online resource; title from title details screen (O'Reilly, viewed March 10, 2022) Build data engineering solutions with Spark programming in Python About This Video Build your own data engineering solutions using Spark structured API in Python Gain an in-depth understanding of the Apache Hadoop architecture, ecosystem, and practices Learn to apply Spark programming basics In Detail If you are looking to expand your knowledge in data engineering or want to level up your portfolio by adding Spark programming to your skillset, then you are in the right place. This course will help you understand Spark programming and apply that knowledge to build data engineering solutions. This course is example-driven and follows a working session-like approach. We will be taking a live coding approach and explaining all the concepts needed along the way. In this course, we will start with a quick introduction to Apache Spark, then set up our environment by installing and using Apache Spark. Next, we will learn about Spark execution model and architecture, and about Spark programming model and developer experience. Next, we will cover Spark structured API foundation and then move towards Spark data sources and sinks. Then we will cover Spark Dataframe and dataset transformations. We will also cover aggregations in Apache Spark and finally, we will cover Spark Dataframe joins. By the end of this course, you will be able to build data engineering solutions using Spark structured API in Python. Audience This course is designed for software engineers willing to develop a data engineering pipeline and application using Apache Spark; for data architects and data engineers who are responsible for designing and building the organization's data-centric infrastructure, for managers and architects who do not directly work with Spark implementation but work with the people who implement Apache Spark at the ground level. This course does not require any prior knowledge of Apache Spark or Hadoop; only programming knowledge using Python programming language is required. Spark (Electronic resource : Apache Software Foundation) Computer programming Python (Computer program language) Spark (Electronic resource : Apache Software Foundation) (OCoLC)fst01938143 Programmation (Informatique) Python (Langage de programmation) computer programming Computer programming (OCoLC)fst00872390 Python (Computer program language) (OCoLC)fst01084736 Instructional films (OCoLC)fst01726236 Internet videos (OCoLC)fst01750214 Nonfiction films (OCoLC)fst01710269 Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet Webcast Pandey, Prashant Kumar MitwirkendeR ctb Packt Publishing. MitwirkendeR ctb |
spellingShingle | Spark programming in Python for beginners with Apache Spark 3 Spark (Electronic resource : Apache Software Foundation) Computer programming Python (Computer program language) Spark (Electronic resource : Apache Software Foundation) (OCoLC)fst01938143 Programmation (Informatique) Python (Langage de programmation) computer programming Computer programming (OCoLC)fst00872390 Python (Computer program language) (OCoLC)fst01084736 Instructional films (OCoLC)fst01726236 Internet videos (OCoLC)fst01750214 Nonfiction films (OCoLC)fst01710269 Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
subject_GND | (OCoLC)fst01938143 (OCoLC)fst00872390 (OCoLC)fst01084736 (OCoLC)fst01726236 (OCoLC)fst01750214 (OCoLC)fst01710269 |
title | Spark programming in Python for beginners with Apache Spark 3 |
title_auth | Spark programming in Python for beginners with Apache Spark 3 |
title_exact_search | Spark programming in Python for beginners with Apache Spark 3 |
title_full | Spark programming in Python for beginners with Apache Spark 3 |
title_fullStr | Spark programming in Python for beginners with Apache Spark 3 |
title_full_unstemmed | Spark programming in Python for beginners with Apache Spark 3 |
title_short | Spark programming in Python for beginners with Apache Spark 3 |
title_sort | spark programming in python for beginners with apache spark 3 |
topic | Spark (Electronic resource : Apache Software Foundation) Computer programming Python (Computer program language) Spark (Electronic resource : Apache Software Foundation) (OCoLC)fst01938143 Programmation (Informatique) Python (Langage de programmation) computer programming Computer programming (OCoLC)fst00872390 Python (Computer program language) (OCoLC)fst01084736 Instructional films (OCoLC)fst01726236 Internet videos (OCoLC)fst01750214 Nonfiction films (OCoLC)fst01710269 Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
topic_facet | Spark (Electronic resource : Apache Software Foundation) Computer programming Python (Computer program language) Programmation (Informatique) Python (Langage de programmation) computer programming Instructional films Internet videos Nonfiction films Films de formation Films autres que de fiction Vidéos sur Internet Webcast |
work_keys_str_mv | AT pandeyprashantkumar sparkprogramminginpythonforbeginnerswithapachespark3 AT packtpublishing sparkprogramminginpythonforbeginnerswithapachespark3 |