Machine learning for time series forecasting with Python:
Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, educati...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Indianapolis
Wiley
2021
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781119682363/?ar |
Zusammenfassung: | Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models' performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling. |
Beschreibung: | Includes bibliographical references and index. - Print version record |
Umfang: | 1 Online-Ressource (227 Seiten) |
ISBN: | 9781119682394 1119682398 9781119682370 1119682371 9781119682387 111968238X 9781119682363 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-076596982 | ||
003 | DE-627-1 | ||
005 | 20240228121238.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220209s2021 xx |||||o 00| ||eng c | ||
020 | |a 9781119682394 |c electronic bk. ; |9 978-1-119-68239-4 | ||
020 | |a 1119682398 |c electronic bk. ; |9 1-119-68239-8 | ||
020 | |a 9781119682370 |c electronic bk. |9 978-1-119-68237-0 | ||
020 | |a 1119682371 |c electronic bk. |9 1-119-68237-1 | ||
020 | |a 9781119682387 |c electronic bk. |9 978-1-119-68238-7 | ||
020 | |a 111968238X |c electronic bk. |9 1-119-68238-X | ||
020 | |a 9781119682363 |9 978-1-119-68236-3 | ||
035 | |a (DE-627-1)076596982 | ||
035 | |a (DE-599)KEP076596982 | ||
035 | |a (ORHE)9781119682363 | ||
035 | |a (DE-627-1)076596982 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.31 | |
100 | 1 | |a Lazzeri, Francesca |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine learning for time series forecasting with Python |c Francesca Lazzeri |
264 | 1 | |a Indianapolis |b Wiley |c 2021 | |
300 | |a 1 Online-Ressource (227 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Print version record | ||
520 | |a Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models' performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
776 | 1 | |z 9781119682363 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781119682363 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781119682363/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-076596982 |
---|---|
_version_ | 1821494824914649088 |
adam_text | |
any_adam_object | |
author | Lazzeri, Francesca |
author_facet | Lazzeri, Francesca |
author_role | aut |
author_sort | Lazzeri, Francesca |
author_variant | f l fl |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)076596982 (DE-599)KEP076596982 (ORHE)9781119682363 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03530cam a22005052 4500</leader><controlfield tag="001">ZDB-30-ORH-076596982</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220209s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119682394</subfield><subfield code="c">electronic bk. ;</subfield><subfield code="9">978-1-119-68239-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119682398</subfield><subfield code="c">electronic bk. ;</subfield><subfield code="9">1-119-68239-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119682370</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-119-68237-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119682371</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-119-68237-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119682387</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-119-68238-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111968238X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-119-68238-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119682363</subfield><subfield code="9">978-1-119-68236-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076596982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP076596982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781119682363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076596982</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lazzeri, Francesca</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for time series forecasting with Python</subfield><subfield code="c">Francesca Lazzeri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Indianapolis</subfield><subfield code="b">Wiley</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (227 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models' performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781119682363</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781119682363</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781119682363/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-076596982 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:31Z |
institution | BVB |
isbn | 9781119682394 1119682398 9781119682370 1119682371 9781119682387 111968238X 9781119682363 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (227 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley |
record_format | marc |
spelling | Lazzeri, Francesca VerfasserIn aut Machine learning for time series forecasting with Python Francesca Lazzeri Indianapolis Wiley 2021 1 Online-Ressource (227 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Print version record Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models' performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling. Machine learning Python (Computer program language) Apprentissage automatique Python (Langage de programmation) 9781119682363 Erscheint auch als Druck-Ausgabe 9781119682363 |
spellingShingle | Lazzeri, Francesca Machine learning for time series forecasting with Python Machine learning Python (Computer program language) Apprentissage automatique Python (Langage de programmation) |
title | Machine learning for time series forecasting with Python |
title_auth | Machine learning for time series forecasting with Python |
title_exact_search | Machine learning for time series forecasting with Python |
title_full | Machine learning for time series forecasting with Python Francesca Lazzeri |
title_fullStr | Machine learning for time series forecasting with Python Francesca Lazzeri |
title_full_unstemmed | Machine learning for time series forecasting with Python Francesca Lazzeri |
title_short | Machine learning for time series forecasting with Python |
title_sort | machine learning for time series forecasting with python |
topic | Machine learning Python (Computer program language) Apprentissage automatique Python (Langage de programmation) |
topic_facet | Machine learning Python (Computer program language) Apprentissage automatique Python (Langage de programmation) |
work_keys_str_mv | AT lazzerifrancesca machinelearningfortimeseriesforecastingwithpython |