Reliable machine learning: applying SRE principles to ML in production
Whether you're part of a small startup or a multinational corporation, this practical book shows data scientists, software and site reliability engineers, product managers, and business owners how to run and establish ML reliably, effectively, and accountably within your organization. You'...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , , , , |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media, Inc, USA
2022
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781098106218/?ar |
Zusammenfassung: | Whether you're part of a small startup or a multinational corporation, this practical book shows data scientists, software and site reliability engineers, product managers, and business owners how to run and establish ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guest authors show you how to run an efficient and reliable ML system. Whether you want to increase revenue, optimize decision making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind. |
Umfang: | 1 Online-Ressource |
ISBN: | 1098106199 9781098106195 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-069805938 | ||
003 | DE-627-1 | ||
005 | 20240228121806.0 | ||
007 | cr uuu---uuuuu | ||
008 | 211110s2022 xx |||||o 00| ||eng c | ||
020 | |a 1098106199 |c electronic book |9 1-0981-0619-9 | ||
020 | |a 9781098106195 |c electronic bk. |9 978-1-0981-0619-5 | ||
035 | |a (DE-627-1)069805938 | ||
035 | |a (DE-599)KEP069805938 | ||
035 | |a (ORHE)9781098106218 | ||
035 | |a (DE-627-1)069805938 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng |a english | ||
082 | 0 | |a 006.3/1 |2 23/eng/20220928 | |
100 | 1 | |a Chen, Cathy |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Reliable machine learning |b applying SRE principles to ML in production |c Cathy Chen, Niall Richard Murphy, Kranti Parisa, D. Sculley & Todd Underwood ; foreword by Sam Charrington |
264 | 1 | |a Sebastopol, CA |b O'Reilly Media, Inc, USA |c 2022 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Whether you're part of a small startup or a multinational corporation, this practical book shows data scientists, software and site reliability engineers, product managers, and business owners how to run and establish ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guest authors show you how to run an efficient and reliable ML system. Whether you want to increase revenue, optimize decision making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Reliability (Engineering) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Fiabilité | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Reliability (Engineering) | |
700 | 1 | |a Murphy, Niall Richard |e MitwirkendeR |4 ctb | |
700 | 1 | |a Parisa, Kranti |e MitwirkendeR |4 ctb | |
700 | 1 | |a Sculley, D. |e MitwirkendeR |4 ctb | |
700 | 1 | |a Underwood, Todd |e MitwirkendeR |4 ctb | |
700 | 1 | |a Charrington, Sam |e MitwirkendeR |4 ctb | |
776 | 1 | |z 1098106229 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1098106229 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098106218/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-069805938 |
---|---|
_version_ | 1821494828623462400 |
adam_text | |
any_adam_object | |
author | Chen, Cathy |
author2 | Murphy, Niall Richard Parisa, Kranti Sculley, D. Underwood, Todd Charrington, Sam |
author2_role | ctb ctb ctb ctb ctb |
author2_variant | n r m nr nrm k p kp d s ds t u tu s c sc |
author_facet | Chen, Cathy Murphy, Niall Richard Parisa, Kranti Sculley, D. Underwood, Todd Charrington, Sam |
author_role | aut |
author_sort | Chen, Cathy |
author_variant | c c cc |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)069805938 (DE-599)KEP069805938 (ORHE)9781098106218 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02707cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-069805938</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">211110s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098106199</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-0981-0619-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098106195</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-0981-0619-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)069805938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP069805938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098106218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)069805938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">english</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20220928</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Cathy</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliable machine learning</subfield><subfield code="b">applying SRE principles to ML in production</subfield><subfield code="c">Cathy Chen, Niall Richard Murphy, Kranti Parisa, D. Sculley & Todd Underwood ; foreword by Sam Charrington</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Inc, USA</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Whether you're part of a small startup or a multinational corporation, this practical book shows data scientists, software and site reliability engineers, product managers, and business owners how to run and establish ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guest authors show you how to run an efficient and reliable ML system. Whether you want to increase revenue, optimize decision making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Reliability (Engineering)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiabilité</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reliability (Engineering)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murphy, Niall Richard</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parisa, Kranti</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sculley, D.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Underwood, Todd</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Charrington, Sam</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1098106229</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1098106229</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098106218/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-069805938 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:35Z |
institution | BVB |
isbn | 1098106199 9781098106195 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly Media, Inc, USA |
record_format | marc |
spelling | Chen, Cathy VerfasserIn aut Reliable machine learning applying SRE principles to ML in production Cathy Chen, Niall Richard Murphy, Kranti Parisa, D. Sculley & Todd Underwood ; foreword by Sam Charrington Sebastopol, CA O'Reilly Media, Inc, USA 2022 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Whether you're part of a small startup or a multinational corporation, this practical book shows data scientists, software and site reliability engineers, product managers, and business owners how to run and establish ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guest authors show you how to run an efficient and reliable ML system. Whether you want to increase revenue, optimize decision making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind. Machine learning Reliability (Engineering) Apprentissage automatique Fiabilité Murphy, Niall Richard MitwirkendeR ctb Parisa, Kranti MitwirkendeR ctb Sculley, D. MitwirkendeR ctb Underwood, Todd MitwirkendeR ctb Charrington, Sam MitwirkendeR ctb 1098106229 Erscheint auch als Druck-Ausgabe 1098106229 |
spellingShingle | Chen, Cathy Reliable machine learning applying SRE principles to ML in production Machine learning Reliability (Engineering) Apprentissage automatique Fiabilité |
title | Reliable machine learning applying SRE principles to ML in production |
title_auth | Reliable machine learning applying SRE principles to ML in production |
title_exact_search | Reliable machine learning applying SRE principles to ML in production |
title_full | Reliable machine learning applying SRE principles to ML in production Cathy Chen, Niall Richard Murphy, Kranti Parisa, D. Sculley & Todd Underwood ; foreword by Sam Charrington |
title_fullStr | Reliable machine learning applying SRE principles to ML in production Cathy Chen, Niall Richard Murphy, Kranti Parisa, D. Sculley & Todd Underwood ; foreword by Sam Charrington |
title_full_unstemmed | Reliable machine learning applying SRE principles to ML in production Cathy Chen, Niall Richard Murphy, Kranti Parisa, D. Sculley & Todd Underwood ; foreword by Sam Charrington |
title_short | Reliable machine learning |
title_sort | reliable machine learning applying sre principles to ml in production |
title_sub | applying SRE principles to ML in production |
topic | Machine learning Reliability (Engineering) Apprentissage automatique Fiabilité |
topic_facet | Machine learning Reliability (Engineering) Apprentissage automatique Fiabilité |
work_keys_str_mv | AT chencathy reliablemachinelearningapplyingsreprinciplestomlinproduction AT murphyniallrichard reliablemachinelearningapplyingsreprinciplestomlinproduction AT parisakranti reliablemachinelearningapplyingsreprinciplestomlinproduction AT sculleyd reliablemachinelearningapplyingsreprinciplestomlinproduction AT underwoodtodd reliablemachinelearningapplyingsreprinciplestomlinproduction AT charringtonsam reliablemachinelearningapplyingsreprinciplestomlinproduction |