Beginning machine learning in the browser: quick-start guide to gait analysis with JavaScript and TensorFlow.js
Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a sim...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Berkeley, CA
Apress
2021
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484268438/?ar |
Zusammenfassung: | Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas. Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized. After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, youll learn about the classification of normal and abnormal Gait patterns. With Beginning Machine Learning in the Browser, youll be on your way to becoming an experienced Machine Learning developer. You will: Work with ML models, calculations, and information gathering Implement TensorFlow.js libraries for ML models Perform Human Gait Analysis using ML techniques in the browser. |
Beschreibung: | Step 2: Single-Person Pose Estimation Using a Browser Webcam. - Includes bibliographical references and index. - Print version record |
Umfang: | 1 Online-Ressource (193 Seiten) |
ISBN: | 9781484268438 1484268431 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-063658178 | ||
003 | DE-627-1 | ||
005 | 20240228121337.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210519s2021 xx |||||o 00| ||eng c | ||
020 | |a 9781484268438 |c electronic bk. |9 978-1-4842-6843-8 | ||
020 | |a 1484268431 |c electronic bk. |9 1-4842-6843-1 | ||
035 | |a (DE-627-1)063658178 | ||
035 | |a (DE-599)KEP063658178 | ||
035 | |a (ORHE)9781484268438 | ||
035 | |a (DE-627-1)063658178 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM004000 |2 bisacsh | |
082 | 0 | |a 006.3/1 |2 23 | |
100 | 1 | |a Suryadevara, Nagender Kumar |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Beginning machine learning in the browser |b quick-start guide to gait analysis with JavaScript and TensorFlow.js |c Nagender Kumar Suryadevara |
264 | 1 | |a Berkeley, CA |b Apress |c 2021 | |
300 | |a 1 Online-Ressource (193 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Step 2: Single-Person Pose Estimation Using a Browser Webcam. - Includes bibliographical references and index. - Print version record | ||
520 | |a Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas. Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized. After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, youll learn about the classification of normal and abnormal Gait patterns. With Beginning Machine Learning in the Browser, youll be on your way to becoming an experienced Machine Learning developer. You will: Work with ML models, calculations, and information gathering Implement TensorFlow.js libraries for ML models Perform Human Gait Analysis using ML techniques in the browser. | ||
650 | 0 | |a Machine learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Machine learning | |
776 | 1 | |z 9781484268421 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781484268421 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484268438/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-063658178 |
---|---|
_version_ | 1821494833484660736 |
adam_text | |
any_adam_object | |
author | Suryadevara, Nagender Kumar |
author_facet | Suryadevara, Nagender Kumar |
author_role | aut |
author_sort | Suryadevara, Nagender Kumar |
author_variant | n k s nk nks |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)063658178 (DE-599)KEP063658178 (ORHE)9781484268438 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02959cam a22004212 4500</leader><controlfield tag="001">ZDB-30-ORH-063658178</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121337.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210519s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484268438</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-6843-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484268431</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-6843-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063658178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP063658178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484268438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063658178</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suryadevara, Nagender Kumar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beginning machine learning in the browser</subfield><subfield code="b">quick-start guide to gait analysis with JavaScript and TensorFlow.js</subfield><subfield code="c">Nagender Kumar Suryadevara</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (193 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Step 2: Single-Person Pose Estimation Using a Browser Webcam. - Includes bibliographical references and index. - Print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas. Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized. After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, youll learn about the classification of normal and abnormal Gait patterns. With Beginning Machine Learning in the Browser, youll be on your way to becoming an experienced Machine Learning developer. You will: Work with ML models, calculations, and information gathering Implement TensorFlow.js libraries for ML models Perform Human Gait Analysis using ML techniques in the browser.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484268421</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484268421</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484268438/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-063658178 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:40Z |
institution | BVB |
isbn | 9781484268438 1484268431 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (193 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Apress |
record_format | marc |
spelling | Suryadevara, Nagender Kumar VerfasserIn aut Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js Nagender Kumar Suryadevara Berkeley, CA Apress 2021 1 Online-Ressource (193 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Step 2: Single-Person Pose Estimation Using a Browser Webcam. - Includes bibliographical references and index. - Print version record Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas. Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized. After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, youll learn about the classification of normal and abnormal Gait patterns. With Beginning Machine Learning in the Browser, youll be on your way to becoming an experienced Machine Learning developer. You will: Work with ML models, calculations, and information gathering Implement TensorFlow.js libraries for ML models Perform Human Gait Analysis using ML techniques in the browser. Machine learning Apprentissage automatique 9781484268421 Erscheint auch als Druck-Ausgabe 9781484268421 |
spellingShingle | Suryadevara, Nagender Kumar Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js Machine learning Apprentissage automatique |
title | Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js |
title_auth | Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js |
title_exact_search | Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js |
title_full | Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js Nagender Kumar Suryadevara |
title_fullStr | Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js Nagender Kumar Suryadevara |
title_full_unstemmed | Beginning machine learning in the browser quick-start guide to gait analysis with JavaScript and TensorFlow.js Nagender Kumar Suryadevara |
title_short | Beginning machine learning in the browser |
title_sort | beginning machine learning in the browser quick start guide to gait analysis with javascript and tensorflow js |
title_sub | quick-start guide to gait analysis with JavaScript and TensorFlow.js |
topic | Machine learning Apprentissage automatique |
topic_facet | Machine learning Apprentissage automatique |
work_keys_str_mv | AT suryadevaranagenderkumar beginningmachinelearninginthebrowserquickstartguidetogaitanalysiswithjavascriptandtensorflowjs |