Architecting Data-Intensive SaaS Applications:
Through explosive growth in the past decade, data now drives significant portions of our lives, from crowdsourced restaurant recommendations to AI systems identifying effective medical treatments. Software developers have unprecedented opportunity to build data applications that generate value from...
Gespeichert in:
Beteiligte Personen: | , , , , |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
O'Reilly Media, Inc.
2021
|
Ausgabe: | 1st edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781098102760/?ar |
Zusammenfassung: | Through explosive growth in the past decade, data now drives significant portions of our lives, from crowdsourced restaurant recommendations to AI systems identifying effective medical treatments. Software developers have unprecedented opportunity to build data applications that generate value from massive datasets across use cases such as customer 360, application health and security analytics, the IoT, machine learning, and embedded analytics. With this report, product managers, architects, and engineering teams will learn how to make key technical decisions when building data-intensive applications, including how to implement extensible data pipelines and share data securely. The report includes design considerations for making these decisions and uses the Snowflake Data Cloud to illustrate best practices. This report explores: Why data applications matter: Get an introduction to data applications and some of the most common use cases Evaluating platforms for building data apps: Evaluate modern data platforms to confidently consider the merits of potential solutions Building scalable data applications: Learn design patterns and best practices for storage, compute, and security Handling and processing data: Explore techniques and real-world examples for building data pipelines to support data applications Designing for data sharing: Learn best practices for sharing data in modern data applications. |
Beschreibung: | Online resource; Title from title page (viewed May 25, 2021) |
Umfang: | 1 Online-Ressource (67 Seiten) |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-063658097 | ||
003 | DE-627-1 | ||
005 | 20240228121347.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210519s2021 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)063658097 | ||
035 | |a (DE-599)KEP063658097 | ||
035 | |a (ORHE)9781098102760 | ||
035 | |a (DE-627-1)063658097 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Waddington, William |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Architecting Data-Intensive SaaS Applications |c Waddington, William |
250 | |a 1st edition. | ||
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b O'Reilly Media, Inc. |c 2021 | |
300 | |a 1 Online-Ressource (67 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; Title from title page (viewed May 25, 2021) | ||
520 | |a Through explosive growth in the past decade, data now drives significant portions of our lives, from crowdsourced restaurant recommendations to AI systems identifying effective medical treatments. Software developers have unprecedented opportunity to build data applications that generate value from massive datasets across use cases such as customer 360, application health and security analytics, the IoT, machine learning, and embedded analytics. With this report, product managers, architects, and engineering teams will learn how to make key technical decisions when building data-intensive applications, including how to implement extensible data pipelines and share data securely. The report includes design considerations for making these decisions and uses the Snowflake Data Cloud to illustrate best practices. This report explores: Why data applications matter: Get an introduction to data applications and some of the most common use cases Evaluating platforms for building data apps: Evaluate modern data platforms to confidently consider the merits of potential solutions Building scalable data applications: Learn design patterns and best practices for storage, compute, and security Handling and processing data: Explore techniques and real-world examples for building data pipelines to support data applications Designing for data sharing: Learn best practices for sharing data in modern data applications. | ||
650 | 4 | |a Electronic books ; local | |
700 | 1 | |a McGinley, Kevin |e VerfasserIn |4 aut | |
700 | 1 | |a Chu, Pui |e VerfasserIn |4 aut | |
700 | 1 | |a Georgievski, Gjorgji |e VerfasserIn |4 aut | |
700 | 1 | |a Kulkarni, Dinesh |e VerfasserIn |4 aut | |
710 | 2 | |a Safari, an O'Reilly Media Company. |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098102760/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-063658097 |
---|---|
_version_ | 1821494833510875137 |
adam_text | |
any_adam_object | |
author | Waddington, William McGinley, Kevin Chu, Pui Georgievski, Gjorgji Kulkarni, Dinesh |
author_corporate | Safari, an O'Reilly Media Company |
author_corporate_role | ctb |
author_facet | Waddington, William McGinley, Kevin Chu, Pui Georgievski, Gjorgji Kulkarni, Dinesh Safari, an O'Reilly Media Company |
author_role | aut aut aut aut aut |
author_sort | Waddington, William |
author_variant | w w ww k m km p c pc g g gg d k dk |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)063658097 (DE-599)KEP063658097 (ORHE)9781098102760 |
edition | 1st edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02823cam a22003972 4500</leader><controlfield tag="001">ZDB-30-ORH-063658097</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121347.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210519s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063658097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP063658097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098102760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063658097</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waddington, William</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Architecting Data-Intensive SaaS Applications</subfield><subfield code="c">Waddington, William</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (67 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; Title from title page (viewed May 25, 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Through explosive growth in the past decade, data now drives significant portions of our lives, from crowdsourced restaurant recommendations to AI systems identifying effective medical treatments. Software developers have unprecedented opportunity to build data applications that generate value from massive datasets across use cases such as customer 360, application health and security analytics, the IoT, machine learning, and embedded analytics. With this report, product managers, architects, and engineering teams will learn how to make key technical decisions when building data-intensive applications, including how to implement extensible data pipelines and share data securely. The report includes design considerations for making these decisions and uses the Snowflake Data Cloud to illustrate best practices. This report explores: Why data applications matter: Get an introduction to data applications and some of the most common use cases Evaluating platforms for building data apps: Evaluate modern data platforms to confidently consider the merits of potential solutions Building scalable data applications: Learn design patterns and best practices for storage, compute, and security Handling and processing data: Explore techniques and real-world examples for building data pipelines to support data applications Designing for data sharing: Learn best practices for sharing data in modern data applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books ; local</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGinley, Kevin</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chu, Pui</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Georgievski, Gjorgji</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulkarni, Dinesh</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Safari, an O'Reilly Media Company.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098102760/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-063658097 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:40Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (67 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Waddington, William VerfasserIn aut Architecting Data-Intensive SaaS Applications Waddington, William 1st edition. [Erscheinungsort nicht ermittelbar] O'Reilly Media, Inc. 2021 1 Online-Ressource (67 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; Title from title page (viewed May 25, 2021) Through explosive growth in the past decade, data now drives significant portions of our lives, from crowdsourced restaurant recommendations to AI systems identifying effective medical treatments. Software developers have unprecedented opportunity to build data applications that generate value from massive datasets across use cases such as customer 360, application health and security analytics, the IoT, machine learning, and embedded analytics. With this report, product managers, architects, and engineering teams will learn how to make key technical decisions when building data-intensive applications, including how to implement extensible data pipelines and share data securely. The report includes design considerations for making these decisions and uses the Snowflake Data Cloud to illustrate best practices. This report explores: Why data applications matter: Get an introduction to data applications and some of the most common use cases Evaluating platforms for building data apps: Evaluate modern data platforms to confidently consider the merits of potential solutions Building scalable data applications: Learn design patterns and best practices for storage, compute, and security Handling and processing data: Explore techniques and real-world examples for building data pipelines to support data applications Designing for data sharing: Learn best practices for sharing data in modern data applications. Electronic books ; local McGinley, Kevin VerfasserIn aut Chu, Pui VerfasserIn aut Georgievski, Gjorgji VerfasserIn aut Kulkarni, Dinesh VerfasserIn aut Safari, an O'Reilly Media Company. MitwirkendeR ctb |
spellingShingle | Waddington, William McGinley, Kevin Chu, Pui Georgievski, Gjorgji Kulkarni, Dinesh Architecting Data-Intensive SaaS Applications Electronic books ; local |
title | Architecting Data-Intensive SaaS Applications |
title_auth | Architecting Data-Intensive SaaS Applications |
title_exact_search | Architecting Data-Intensive SaaS Applications |
title_full | Architecting Data-Intensive SaaS Applications Waddington, William |
title_fullStr | Architecting Data-Intensive SaaS Applications Waddington, William |
title_full_unstemmed | Architecting Data-Intensive SaaS Applications Waddington, William |
title_short | Architecting Data-Intensive SaaS Applications |
title_sort | architecting data intensive saas applications |
topic | Electronic books ; local |
topic_facet | Electronic books ; local |
work_keys_str_mv | AT waddingtonwilliam architectingdataintensivesaasapplications AT mcginleykevin architectingdataintensivesaasapplications AT chupui architectingdataintensivesaasapplications AT georgievskigjorgji architectingdataintensivesaasapplications AT kulkarnidinesh architectingdataintensivesaasapplications AT safarianoreillymediacompany architectingdataintensivesaasapplications |