Practical python data wrangling and data quality: getting started with reading, cleaning, and analyzing data
There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them. Whether you already work with data or just want to understand its possibilities, the techniques and advice in this practical book will help you learn how to better clean, e...
Gespeichert in:
Beteilige Person: | |
---|---|
Körperschaften: | , |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Sebastpol, CA
O'Reilly Media
2021
|
Ausgabe: | First edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781492091493/?ar |
Zusammenfassung: | There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them. Whether you already work with data or just want to understand its possibilities, the techniques and advice in this practical book will help you learn how to better clean, evaluate, and analyze data to generate meaningful insights and compelling visualizations. Through foundational concepts and worked examples, author Susan McGregor provides the concepts and tools you need to evaluate and analyze all kinds of data and communicate your findings effectively. This book provides a methodical, jargon-free way for practitioners of all levels to harness the power of data. Use Python 3.8+ to read, write, and transform data from a variety of sources Understand and use programming basics in Python to wrangle data at scale Organize, document, and structure your code using best practices Complete exercises either on your own machine or on the web Collect data from structured data files, web pages, and APIs Perform basic statistical analysis to make meaning from data sets Visualize and present data in clear and compelling ways. |
Beschreibung: | Includes index. - Description based on online resource; title from digital title page (viewed on February 01, 2022) |
Umfang: | 1 Online-Ressource (65 Seiten) |
ISBN: | 9781492091493 1492091499 9781492091479 1492091472 9781492091455 1492091456 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-060761377 | ||
003 | DE-627-1 | ||
005 | 20240228121305.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201219s2021 xx |||||o 00| ||eng c | ||
020 | |a 9781492091493 |9 978-1-4920-9149-3 | ||
020 | |a 1492091499 |9 1-4920-9149-9 | ||
020 | |a 9781492091479 |c electronic book |9 978-1-4920-9147-9 | ||
020 | |a 1492091472 |c electronic book |9 1-4920-9147-2 | ||
020 | |a 9781492091455 |c electronic book |9 978-1-4920-9145-5 | ||
020 | |a 1492091456 |c electronic book |9 1-4920-9145-6 | ||
035 | |a (DE-627-1)060761377 | ||
035 | |a (DE-599)KEP060761377 | ||
035 | |a (ORHE)9781492091493 | ||
035 | |a (DE-627-1)060761377 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/12 |2 23 | |
100 | 1 | |a McGregor, Susan |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Practical python data wrangling and data quality |b getting started with reading, cleaning, and analyzing data |c Susan E. McGregor |
250 | |a First edition. | ||
264 | 1 | |a Sebastpol, CA |b O'Reilly Media |c 2021 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (65 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index. - Description based on online resource; title from digital title page (viewed on February 01, 2022) | ||
520 | |a There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them. Whether you already work with data or just want to understand its possibilities, the techniques and advice in this practical book will help you learn how to better clean, evaluate, and analyze data to generate meaningful insights and compelling visualizations. Through foundational concepts and worked examples, author Susan McGregor provides the concepts and tools you need to evaluate and analyze all kinds of data and communicate your findings effectively. This book provides a methodical, jargon-free way for practitioners of all levels to harness the power of data. Use Python 3.8+ to read, write, and transform data from a variety of sources Understand and use programming basics in Python to wrangle data at scale Organize, document, and structure your code using best practices Complete exercises either on your own machine or on the web Collect data from structured data files, web pages, and APIs Perform basic statistical analysis to make meaning from data sets Visualize and present data in clear and compelling ways. | ||
650 | 0 | |a Data mining | |
650 | 0 | |a Electronic data processing |x Data preparation | |
650 | 0 | |a Python (Computer program language) | |
650 | 2 | |a Data Mining | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Préparation des données (Informatique) | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Data mining | |
650 | 4 | |a Electronic data processing ; Data preparation | |
650 | 4 | |a Python (Computer program language) | |
710 | 2 | |a O'Reilly for Higher Education (Firm), |e MitwirkendeR |4 ctb | |
710 | 2 | |a Safari, an O'Reilly Media Company. |e MitwirkendeR |4 ctb | |
776 | 1 | |z 1492091502 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1492091502 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492091493/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-060761377 |
---|---|
_version_ | 1831287052837060608 |
adam_text | |
any_adam_object | |
author | McGregor, Susan |
author_corporate | O'Reilly for Higher Education (Firm) Safari, an O'Reilly Media Company |
author_corporate_role | ctb ctb |
author_facet | McGregor, Susan O'Reilly for Higher Education (Firm) Safari, an O'Reilly Media Company |
author_role | aut |
author_sort | McGregor, Susan |
author_variant | s m sm |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)060761377 (DE-599)KEP060761377 (ORHE)9781492091493 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03432cam a22005892c 4500</leader><controlfield tag="001">ZDB-30-ORH-060761377</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201219s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492091493</subfield><subfield code="9">978-1-4920-9149-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492091499</subfield><subfield code="9">1-4920-9149-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492091479</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4920-9147-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492091472</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4920-9147-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492091455</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4920-9145-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492091456</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4920-9145-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)060761377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP060761377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492091493</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)060761377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McGregor, Susan</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical python data wrangling and data quality</subfield><subfield code="b">getting started with reading, cleaning, and analyzing data</subfield><subfield code="c">Susan E. McGregor</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastpol, CA</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (65 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Description based on online resource; title from digital title page (viewed on February 01, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them. Whether you already work with data or just want to understand its possibilities, the techniques and advice in this practical book will help you learn how to better clean, evaluate, and analyze data to generate meaningful insights and compelling visualizations. Through foundational concepts and worked examples, author Susan McGregor provides the concepts and tools you need to evaluate and analyze all kinds of data and communicate your findings effectively. This book provides a methodical, jargon-free way for practitioners of all levels to harness the power of data. Use Python 3.8+ to read, write, and transform data from a variety of sources Understand and use programming basics in Python to wrangle data at scale Organize, document, and structure your code using best practices Complete exercises either on your own machine or on the web Collect data from structured data files, web pages, and APIs Perform basic statistical analysis to make meaning from data sets Visualize and present data in clear and compelling ways.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield><subfield code="x">Data preparation</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Préparation des données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing ; Data preparation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly for Higher Education (Firm),</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Safari, an O'Reilly Media Company.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1492091502</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1492091502</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492091493/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-060761377 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:23:48Z |
institution | BVB |
isbn | 9781492091493 1492091499 9781492091479 1492091472 9781492091455 1492091456 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (65 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | O'Reilly Media |
record_format | marc |
spelling | McGregor, Susan VerfasserIn aut Practical python data wrangling and data quality getting started with reading, cleaning, and analyzing data Susan E. McGregor First edition. Sebastpol, CA O'Reilly Media 2021 ©2022 1 Online-Ressource (65 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index. - Description based on online resource; title from digital title page (viewed on February 01, 2022) There are awesome discoveries to be made and valuable stories to be told in datasets--and this book will help you uncover them. Whether you already work with data or just want to understand its possibilities, the techniques and advice in this practical book will help you learn how to better clean, evaluate, and analyze data to generate meaningful insights and compelling visualizations. Through foundational concepts and worked examples, author Susan McGregor provides the concepts and tools you need to evaluate and analyze all kinds of data and communicate your findings effectively. This book provides a methodical, jargon-free way for practitioners of all levels to harness the power of data. Use Python 3.8+ to read, write, and transform data from a variety of sources Understand and use programming basics in Python to wrangle data at scale Organize, document, and structure your code using best practices Complete exercises either on your own machine or on the web Collect data from structured data files, web pages, and APIs Perform basic statistical analysis to make meaning from data sets Visualize and present data in clear and compelling ways. Data mining Electronic data processing Data preparation Python (Computer program language) Data Mining Exploration de données (Informatique) Préparation des données (Informatique) Python (Langage de programmation) Electronic data processing ; Data preparation O'Reilly for Higher Education (Firm), MitwirkendeR ctb Safari, an O'Reilly Media Company. MitwirkendeR ctb 1492091502 Erscheint auch als Druck-Ausgabe 1492091502 |
spellingShingle | McGregor, Susan Practical python data wrangling and data quality getting started with reading, cleaning, and analyzing data Data mining Electronic data processing Data preparation Python (Computer program language) Data Mining Exploration de données (Informatique) Préparation des données (Informatique) Python (Langage de programmation) Electronic data processing ; Data preparation |
title | Practical python data wrangling and data quality getting started with reading, cleaning, and analyzing data |
title_auth | Practical python data wrangling and data quality getting started with reading, cleaning, and analyzing data |
title_exact_search | Practical python data wrangling and data quality getting started with reading, cleaning, and analyzing data |
title_full | Practical python data wrangling and data quality getting started with reading, cleaning, and analyzing data Susan E. McGregor |
title_fullStr | Practical python data wrangling and data quality getting started with reading, cleaning, and analyzing data Susan E. McGregor |
title_full_unstemmed | Practical python data wrangling and data quality getting started with reading, cleaning, and analyzing data Susan E. McGregor |
title_short | Practical python data wrangling and data quality |
title_sort | practical python data wrangling and data quality getting started with reading cleaning and analyzing data |
title_sub | getting started with reading, cleaning, and analyzing data |
topic | Data mining Electronic data processing Data preparation Python (Computer program language) Data Mining Exploration de données (Informatique) Préparation des données (Informatique) Python (Langage de programmation) Electronic data processing ; Data preparation |
topic_facet | Data mining Electronic data processing Data preparation Python (Computer program language) Data Mining Exploration de données (Informatique) Préparation des données (Informatique) Python (Langage de programmation) Electronic data processing ; Data preparation |
work_keys_str_mv | AT mcgregorsusan practicalpythondatawranglinganddataqualitygettingstartedwithreadingcleaningandanalyzingdata AT oreillyforhighereducationfirm practicalpythondatawranglinganddataqualitygettingstartedwithreadingcleaningandanalyzingdata AT safarianoreillymediacompany practicalpythondatawranglinganddataqualitygettingstartedwithreadingcleaningandanalyzingdata |