Practical Machine Learning in R:
"Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Pra...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Newark
John Wiley & Sons, Incorporated
2020
|
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781119591511/?ar |
Summary: | "Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more"--Amazon. |
Item Description: | Description based upon print version of record. - Binomial Logistic Regression Model. - Includes bibliographical references and index |
Physical Description: | 1 Online-Ressource (466 Seiten) |
ISBN: | 9781119591573 1119591570 9781119591535 1119591538 1523133198 9781523133192 1119591546 9781119591542 9781119591511 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-058897445 | ||
003 | DE-627-1 | ||
005 | 20240228121026.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201021s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781119591573 |9 978-1-119-59157-3 | ||
020 | |a 1119591570 |9 1-119-59157-0 | ||
020 | |a 9781119591535 |c electronic bk. |9 978-1-119-59153-5 | ||
020 | |a 1119591538 |c electronic bk. |9 1-119-59153-8 | ||
020 | |a 1523133198 |9 1-5231-3319-8 | ||
020 | |a 9781523133192 |9 978-1-5231-3319-2 | ||
020 | |a 1119591546 |9 1-119-59154-6 | ||
020 | |a 9781119591542 |9 978-1-119-59154-2 | ||
020 | |a 9781119591511 |9 978-1-119-59151-1 | ||
035 | |a (DE-627-1)058897445 | ||
035 | |a (DE-599)KEP058897445 | ||
035 | |a (ORHE)9781119591511 | ||
035 | |a (DE-627-1)058897445 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.31 |2 23 | |
100 | 1 | |a Nwanganga, Fred |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Practical Machine Learning in R |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2020 | |
300 | |a 1 Online-Ressource (466 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Description based upon print version of record. - Binomial Logistic Regression Model. - Includes bibliographical references and index | ||
520 | |a "Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more"--Amazon. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a R (Computer program language) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a R (Langage de programmation) | |
650 | 4 | |a Machine learning | |
650 | 4 | |a R (Computer program language) | |
700 | 1 | |a Chapple, Mike |e MitwirkendeR |4 ctb | |
776 | 1 | |z 9781119591511 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781119591511 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781119591511/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-058897445 |
---|---|
_version_ | 1831287054544142336 |
adam_text | |
any_adam_object | |
author | Nwanganga, Fred |
author2 | Chapple, Mike |
author2_role | ctb |
author2_variant | m c mc |
author_facet | Nwanganga, Fred Chapple, Mike |
author_role | aut |
author_sort | Nwanganga, Fred |
author_variant | f n fn |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)058897445 (DE-599)KEP058897445 (ORHE)9781119591511 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02993cam a22005412c 4500</leader><controlfield tag="001">ZDB-30-ORH-058897445</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201021s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119591573</subfield><subfield code="9">978-1-119-59157-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119591570</subfield><subfield code="9">1-119-59157-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119591535</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-119-59153-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119591538</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-119-59153-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1523133198</subfield><subfield code="9">1-5231-3319-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781523133192</subfield><subfield code="9">978-1-5231-3319-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119591546</subfield><subfield code="9">1-119-59154-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119591542</subfield><subfield code="9">978-1-119-59154-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119591511</subfield><subfield code="9">978-1-119-59151-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)058897445</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP058897445</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781119591511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)058897445</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nwanganga, Fred</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical Machine Learning in R</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (466 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record. - Binomial Logistic Regression Model. - Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more"--Amazon.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chapple, Mike</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781119591511</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781119591511</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781119591511/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-058897445 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:23:49Z |
institution | BVB |
isbn | 9781119591573 1119591570 9781119591535 1119591538 1523133198 9781523133192 1119591546 9781119591542 9781119591511 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (466 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Nwanganga, Fred VerfasserIn aut Practical Machine Learning in R Newark John Wiley & Sons, Incorporated 2020 1 Online-Ressource (466 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Description based upon print version of record. - Binomial Logistic Regression Model. - Includes bibliographical references and index "Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more"--Amazon. Machine learning R (Computer program language) Apprentissage automatique R (Langage de programmation) Chapple, Mike MitwirkendeR ctb 9781119591511 Erscheint auch als Druck-Ausgabe 9781119591511 |
spellingShingle | Nwanganga, Fred Practical Machine Learning in R Machine learning R (Computer program language) Apprentissage automatique R (Langage de programmation) |
title | Practical Machine Learning in R |
title_auth | Practical Machine Learning in R |
title_exact_search | Practical Machine Learning in R |
title_full | Practical Machine Learning in R |
title_fullStr | Practical Machine Learning in R |
title_full_unstemmed | Practical Machine Learning in R |
title_short | Practical Machine Learning in R |
title_sort | practical machine learning in r |
topic | Machine learning R (Computer program language) Apprentissage automatique R (Langage de programmation) |
topic_facet | Machine learning R (Computer program language) Apprentissage automatique R (Langage de programmation) |
work_keys_str_mv | AT nwangangafred practicalmachinelearninginr AT chapplemike practicalmachinelearninginr |