Search logs + machine learning: = autotagged inventory
"For ecommerce applications, matching users with the items they want is the name of the game. If they can't find what they want, then how can they buy anything? John Berryman takes a deep dive into the problem space and Eventbrite's approach. He explores how the company gathered train...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch Video |
Sprache: | Englisch |
Veröffentlicht: |
[Place of publication not identified]
O'Reilly Media
2020
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/0636920372349/?ar |
Zusammenfassung: | "For ecommerce applications, matching users with the items they want is the name of the game. If they can't find what they want, then how can they buy anything? John Berryman takes a deep dive into the problem space and Eventbrite's approach. He explores how the company gathered training data from its search and click logs, and how it built and refined the model. You'll see the output of the model and both the positive results of Eventbrite's work, as well as the work left to be done. You'll leave with some new ideas to take back to your business."--Resource description page |
Beschreibung: | Title from resource description page (viewed July 21, 2020) |
Umfang: | 1 Online-Ressource (1 streaming video file (37 min., 40 sec.)) |
Internformat
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-050575112 | ||
003 | DE-627-1 | ||
005 | 20240228121118.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 200324s2020 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)050575112 | ||
035 | |a (DE-599)KEP050575112 | ||
035 | |a (ORHE)0636920372349 | ||
035 | |a (DE-627-1)050575112 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Berryman, John |d 1980- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Search logs + machine learning |b = autotagged inventory |c John Berryman |
246 | 3 | 1 | |a autotagged inventory |
264 | 1 | |a [Place of publication not identified] |b O'Reilly Media |c 2020 | |
300 | |a 1 Online-Ressource (1 streaming video file (37 min., 40 sec.)) | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Title from resource description page (viewed July 21, 2020) | ||
520 | |a "For ecommerce applications, matching users with the items they want is the name of the game. If they can't find what they want, then how can they buy anything? John Berryman takes a deep dive into the problem space and Eventbrite's approach. He explores how the company gathered training data from its search and click logs, and how it built and refined the model. You'll see the output of the model and both the positive results of Eventbrite's work, as well as the work left to be done. You'll leave with some new ideas to take back to your business."--Resource description page | ||
650 | 0 | |a Electronic data processing |v Congresses | |
650 | 0 | |a Data structures (Computer science) |v Congresses | |
650 | 0 | |a Cloud computing |v Congresses | |
650 | 0 | |a Artificial intelligence |v Congresses | |
650 | 4 | |a Structures de données (Informatique) ; Congrès | |
650 | 4 | |a Infonuagique ; Congrès | |
650 | 4 | |a Intelligence artificielle ; Congrès | |
650 | 4 | |a Artificial intelligence |0 (OCoLC)fst00817247 | |
650 | 4 | |a Cloud computing |0 (OCoLC)fst01745899 | |
650 | 4 | |a Data structures (Computer science) |0 (OCoLC)fst00887978 | |
650 | 4 | |a Electronic data processing |0 (OCoLC)fst00906956 | |
650 | 4 | |a Conference papers and proceedings |0 (OCoLC)fst01423772 | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/0636920372349/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-050575112 |
---|---|
_version_ | 1821494947361062912 |
adam_text | |
any_adam_object | |
author | Berryman, John 1980- |
author_facet | Berryman, John 1980- |
author_role | aut |
author_sort | Berryman, John 1980- |
author_variant | j b jb |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)050575112 (DE-599)KEP050575112 (ORHE)0636920372349 |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02456cgm a22004812 4500</leader><controlfield tag="001">ZDB-30-ORH-050575112</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121118.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200324s2020 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)050575112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP050575112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)0636920372349</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)050575112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berryman, John</subfield><subfield code="d">1980-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Search logs + machine learning</subfield><subfield code="b"> = autotagged inventory</subfield><subfield code="c">John Berryman</subfield></datafield><datafield tag="246" ind1="3" ind2="1"><subfield code="a">autotagged inventory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 streaming video file (37 min., 40 sec.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from resource description page (viewed July 21, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"For ecommerce applications, matching users with the items they want is the name of the game. If they can't find what they want, then how can they buy anything? John Berryman takes a deep dive into the problem space and Eventbrite's approach. He explores how the company gathered training data from its search and click logs, and how it built and refined the model. You'll see the output of the model and both the positive results of Eventbrite's work, as well as the work left to be done. You'll leave with some new ideas to take back to your business."--Resource description page</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data structures (Computer science)</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cloud computing</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structures de données (Informatique) ; Congrès</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infonuagique ; Congrès</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle ; Congrès</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield><subfield code="0">(OCoLC)fst00817247</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud computing</subfield><subfield code="0">(OCoLC)fst01745899</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield><subfield code="0">(OCoLC)fst00887978</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield><subfield code="0">(OCoLC)fst00906956</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conference papers and proceedings</subfield><subfield code="0">(OCoLC)fst01423772</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/0636920372349/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-050575112 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:28Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 streaming video file (37 min., 40 sec.)) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Berryman, John 1980- VerfasserIn aut Search logs + machine learning = autotagged inventory John Berryman autotagged inventory [Place of publication not identified] O'Reilly Media 2020 1 Online-Ressource (1 streaming video file (37 min., 40 sec.)) zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Title from resource description page (viewed July 21, 2020) "For ecommerce applications, matching users with the items they want is the name of the game. If they can't find what they want, then how can they buy anything? John Berryman takes a deep dive into the problem space and Eventbrite's approach. He explores how the company gathered training data from its search and click logs, and how it built and refined the model. You'll see the output of the model and both the positive results of Eventbrite's work, as well as the work left to be done. You'll leave with some new ideas to take back to your business."--Resource description page Electronic data processing Congresses Data structures (Computer science) Congresses Cloud computing Congresses Artificial intelligence Congresses Structures de données (Informatique) ; Congrès Infonuagique ; Congrès Intelligence artificielle ; Congrès Artificial intelligence (OCoLC)fst00817247 Cloud computing (OCoLC)fst01745899 Data structures (Computer science) (OCoLC)fst00887978 Electronic data processing (OCoLC)fst00906956 Conference papers and proceedings (OCoLC)fst01423772 |
spellingShingle | Berryman, John 1980- Search logs + machine learning = autotagged inventory Electronic data processing Congresses Data structures (Computer science) Congresses Cloud computing Congresses Artificial intelligence Congresses Structures de données (Informatique) ; Congrès Infonuagique ; Congrès Intelligence artificielle ; Congrès Artificial intelligence (OCoLC)fst00817247 Cloud computing (OCoLC)fst01745899 Data structures (Computer science) (OCoLC)fst00887978 Electronic data processing (OCoLC)fst00906956 Conference papers and proceedings (OCoLC)fst01423772 |
subject_GND | (OCoLC)fst00817247 (OCoLC)fst01745899 (OCoLC)fst00887978 (OCoLC)fst00906956 (OCoLC)fst01423772 |
title | Search logs + machine learning = autotagged inventory |
title_alt | autotagged inventory |
title_auth | Search logs + machine learning = autotagged inventory |
title_exact_search | Search logs + machine learning = autotagged inventory |
title_full | Search logs + machine learning = autotagged inventory John Berryman |
title_fullStr | Search logs + machine learning = autotagged inventory John Berryman |
title_full_unstemmed | Search logs + machine learning = autotagged inventory John Berryman |
title_short | Search logs + machine learning |
title_sort | search logs machine learning autotagged inventory |
title_sub | = autotagged inventory |
topic | Electronic data processing Congresses Data structures (Computer science) Congresses Cloud computing Congresses Artificial intelligence Congresses Structures de données (Informatique) ; Congrès Infonuagique ; Congrès Intelligence artificielle ; Congrès Artificial intelligence (OCoLC)fst00817247 Cloud computing (OCoLC)fst01745899 Data structures (Computer science) (OCoLC)fst00887978 Electronic data processing (OCoLC)fst00906956 Conference papers and proceedings (OCoLC)fst01423772 |
topic_facet | Electronic data processing Congresses Data structures (Computer science) Congresses Cloud computing Congresses Artificial intelligence Congresses Structures de données (Informatique) ; Congrès Infonuagique ; Congrès Intelligence artificielle ; Congrès Artificial intelligence Cloud computing Data structures (Computer science) Electronic data processing Conference papers and proceedings |
work_keys_str_mv | AT berrymanjohn searchlogsmachinelearningautotaggedinventory AT berrymanjohn autotaggedinventory |