Industrial machine learning: using artificial intelligence as a transformational disruptor
Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
New York
Apress
[2020]
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484253168/?ar |
Zusammenfassung: | Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. You will: Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science. |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from PDF title page (SpringerLink, viewed December 16, 2019) |
Umfang: | 1 Online-Ressource illustrations |
ISBN: | 9781484253168 1484253167 1484253175 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-049360922 | ||
003 | DE-627-1 | ||
005 | 20240228120935.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200120s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781484253168 |c electronic bk. |9 978-1-4842-5316-8 | ||
020 | |a 1484253167 |c electronic bk. |9 1-4842-5316-7 | ||
020 | |a 1484253175 |9 1-4842-5317-5 | ||
035 | |a (DE-627-1)049360922 | ||
035 | |a (DE-599)KEP049360922 | ||
035 | |a (ORHE)9781484253168 | ||
035 | |a (DE-627-1)049360922 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a UYQ |2 bicssc | |
072 | 7 | |a COM004000 |2 bisacsh | |
082 | 0 | |a 006.3/1 |2 23 | |
100 | 1 | |a Vermeulen, Andreas François |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Industrial machine learning |b using artificial intelligence as a transformational disruptor |c Andreas François Vermeulen |
264 | 1 | |a New York |b Apress |c [2020] | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from PDF title page (SpringerLink, viewed December 16, 2019) | ||
520 | |a Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. You will: Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science. | ||
650 | 0 | |a Machine learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Machine learning | |
776 | 1 | |z 1484253159 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1484253159 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484253168/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-049360922 |
---|---|
_version_ | 1821494845266460672 |
adam_text | |
any_adam_object | |
author | Vermeulen, Andreas François |
author_facet | Vermeulen, Andreas François |
author_role | aut |
author_sort | Vermeulen, Andreas François |
author_variant | a f v af afv |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)049360922 (DE-599)KEP049360922 (ORHE)9781484253168 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03129cam a22004572 4500</leader><controlfield tag="001">ZDB-30-ORH-049360922</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120935.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200120s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484253168</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-5316-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484253167</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-5316-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484253175</subfield><subfield code="9">1-4842-5317-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)049360922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP049360922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484253168</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)049360922</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vermeulen, Andreas François</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Industrial machine learning</subfield><subfield code="b">using artificial intelligence as a transformational disruptor</subfield><subfield code="c">Andreas François Vermeulen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Apress</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from PDF title page (SpringerLink, viewed December 16, 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. You will: Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1484253159</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1484253159</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484253168/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-049360922 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:20:51Z |
institution | BVB |
isbn | 9781484253168 1484253167 1484253175 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Apress |
record_format | marc |
spelling | Vermeulen, Andreas François VerfasserIn aut Industrial machine learning using artificial intelligence as a transformational disruptor Andreas François Vermeulen New York Apress [2020] ©2020 1 Online-Ressource illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from PDF title page (SpringerLink, viewed December 16, 2019) Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. You will: Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science. Machine learning Apprentissage automatique 1484253159 Erscheint auch als Druck-Ausgabe 1484253159 |
spellingShingle | Vermeulen, Andreas François Industrial machine learning using artificial intelligence as a transformational disruptor Machine learning Apprentissage automatique |
title | Industrial machine learning using artificial intelligence as a transformational disruptor |
title_auth | Industrial machine learning using artificial intelligence as a transformational disruptor |
title_exact_search | Industrial machine learning using artificial intelligence as a transformational disruptor |
title_full | Industrial machine learning using artificial intelligence as a transformational disruptor Andreas François Vermeulen |
title_fullStr | Industrial machine learning using artificial intelligence as a transformational disruptor Andreas François Vermeulen |
title_full_unstemmed | Industrial machine learning using artificial intelligence as a transformational disruptor Andreas François Vermeulen |
title_short | Industrial machine learning |
title_sort | industrial machine learning using artificial intelligence as a transformational disruptor |
title_sub | using artificial intelligence as a transformational disruptor |
topic | Machine learning Apprentissage automatique |
topic_facet | Machine learning Apprentissage automatique |
work_keys_str_mv | AT vermeulenandreasfrancois industrialmachinelearningusingartificialintelligenceasatransformationaldisruptor |