Mining the Web: discovering knowledge from hypertext data

Mining the Web: Discovering Knowledge from Hypertext Data is the first book devoted entirely to techniques for producing knowledge from the vast body of unstructured Web data. Building on an initial survey of infrastructural issuesincluding Web crawling and indexingChakrabarti examines low-level mac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Chakrabarti, Soumen (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Boston Morgan Kaufmann 2003
Schriftenreihe:Morgan Kaufmann series in data management systems
Schlagwörter:
Links:https://learning.oreilly.com/library/view/-/9781558607545/?ar
Zusammenfassung:Mining the Web: Discovering Knowledge from Hypertext Data is the first book devoted entirely to techniques for producing knowledge from the vast body of unstructured Web data. Building on an initial survey of infrastructural issuesincluding Web crawling and indexingChakrabarti examines low-level machine learning techniques as they relate specifically to the challenges of Web mining. He then devotes the final part of the book to applications that unite infrastructure and analysis to bring machine learning to bear on systematically acquired and stored data. Here the focus is on results: the strengths and weaknesses of these applications, along with their potential as foundations for further progress. From Chakrabarti's workpainstaking, critical, and forward-lookingreaders will gain the theoretical and practical understanding they need to contribute to the Web mining effort. * A comprehensive, critical exploration of statistics-based attempts to make sense of Web Mining. * Details the special challenges associated with analyzing unstructured and semi-structured data. * Looks at how classical Information Retrieval techniques have been modified for use with Web data. * Focuses on today's dominant learning methods: clustering and classification, hyperlink analysis, and supervised and semi-supervised learning. * Analyzes current applications for resource discovery and social network analysis. * An excellent way to introduce students to especially vital applications of data mining and machine learning technology..
Beschreibung:Includes bibliographical references (pages 307-326) and index. - Print version record
Umfang:1 Online-Ressource (xviii, 344 Seiten) illustrations
ISBN:9780080511726
0080511724
0585449996
9780585449999
1281035327
9781281035325
9786611035327
661103532X
9781558607545