K-means and hierarchical clustering with Python:
Clustering is the usual starting point for unsupervised machine learning. This lesson introduces the k-means and hierarchical clustering algorithms, implemented in Python code. Why is it important? Whenever you look at a data source, it's likely that the data will somehow form clusters. Dataset...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
[Erscheinungsort nicht ermittelbar]
O'Reilly Media, Inc.
2016
|
Edition: | 1st edition |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781491965306/?ar |
Summary: | Clustering is the usual starting point for unsupervised machine learning. This lesson introduces the k-means and hierarchical clustering algorithms, implemented in Python code. Why is it important? Whenever you look at a data source, it's likely that the data will somehow form clusters. Datasets with higher dimensions become increasingly more difficult to "eyeball" based on human perception and intuition. These clustering algorithms allow you to discover similarities within data at scale, without first having to label a large training dataset. What you'll learn--and how you can apply it Understand how the k-means and hierarchical clustering algorithms work. Create classes in Python to implement these algorithms, and learn how to apply them in example applications. Identify clusters of similar inputs, and find a representative value for each cluster. Prepare to use your own implementations or reuse algorithms implemented in scikit-learn. This lesson is for you because ... People interested in data science need to learn how to implement k-means and bottom-up hierarchical clustering algorithms Prerequisites Some experience writing code in Python Experience working with data in vector or matrix format Materials or downloads needed in advance Download this code, where you'll find this lesson's code in Chapter 19, plus you'll need the linear_algebra functions from Chapter 4. This lesson is taken from Data Science from Scratch by Joel Grus |
Physical Description: | 1 Online-Ressource (20 Seiten) |
ISBN: | 9781491965306 1491965304 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048564753 | ||
003 | DE-627-1 | ||
005 | 20240228120417.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2016 xx |||||o 00| ||eng c | ||
020 | |a 9781491965306 |9 978-1-4919-6530-6 | ||
020 | |a 1491965304 |9 1-4919-6530-4 | ||
035 | |a (DE-627-1)048564753 | ||
035 | |a (DE-599)KEP048564753 | ||
035 | |a (ORHE)9781491965306 | ||
035 | |a (DE-627-1)048564753 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Grus, Joel |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a K-means and hierarchical clustering with Python |c Grus, Joel |
250 | |a 1st edition | ||
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b O'Reilly Media, Inc. |c 2016 | |
300 | |a 1 Online-Ressource (20 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Clustering is the usual starting point for unsupervised machine learning. This lesson introduces the k-means and hierarchical clustering algorithms, implemented in Python code. Why is it important? Whenever you look at a data source, it's likely that the data will somehow form clusters. Datasets with higher dimensions become increasingly more difficult to "eyeball" based on human perception and intuition. These clustering algorithms allow you to discover similarities within data at scale, without first having to label a large training dataset. What you'll learn--and how you can apply it Understand how the k-means and hierarchical clustering algorithms work. Create classes in Python to implement these algorithms, and learn how to apply them in example applications. Identify clusters of similar inputs, and find a representative value for each cluster. Prepare to use your own implementations or reuse algorithms implemented in scikit-learn. This lesson is for you because ... People interested in data science need to learn how to implement k-means and bottom-up hierarchical clustering algorithms Prerequisites Some experience writing code in Python Experience working with data in vector or matrix format Materials or downloads needed in advance Download this code, where you'll find this lesson's code in Chapter 19, plus you'll need the linear_algebra functions from Chapter 4. This lesson is taken from Data Science from Scratch by Joel Grus | ||
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Python (Computer program language) | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781491965306/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-048564753 |
---|---|
_version_ | 1829007761495556097 |
adam_text | |
any_adam_object | |
author | Grus, Joel |
author_facet | Grus, Joel |
author_role | aut |
author_sort | Grus, Joel |
author_variant | j g jg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048564753 (DE-599)KEP048564753 (ORHE)9781491965306 |
edition | 1st edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02695cam a22003732c 4500</leader><controlfield tag="001">ZDB-30-ORH-048564753</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120417.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491965306</subfield><subfield code="9">978-1-4919-6530-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491965304</subfield><subfield code="9">1-4919-6530-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048564753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048564753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491965306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048564753</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grus, Joel</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">K-means and hierarchical clustering with Python</subfield><subfield code="c">Grus, Joel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (20 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Clustering is the usual starting point for unsupervised machine learning. This lesson introduces the k-means and hierarchical clustering algorithms, implemented in Python code. Why is it important? Whenever you look at a data source, it's likely that the data will somehow form clusters. Datasets with higher dimensions become increasingly more difficult to "eyeball" based on human perception and intuition. These clustering algorithms allow you to discover similarities within data at scale, without first having to label a large training dataset. What you'll learn--and how you can apply it Understand how the k-means and hierarchical clustering algorithms work. Create classes in Python to implement these algorithms, and learn how to apply them in example applications. Identify clusters of similar inputs, and find a representative value for each cluster. Prepare to use your own implementations or reuse algorithms implemented in scikit-learn. This lesson is for you because ... People interested in data science need to learn how to implement k-means and bottom-up hierarchical clustering algorithms Prerequisites Some experience writing code in Python Experience working with data in vector or matrix format Materials or downloads needed in advance Download this code, where you'll find this lesson's code in Chapter 19, plus you'll need the linear_algebra functions from Chapter 4. This lesson is taken from Data Science from Scratch by Joel Grus</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491965306/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048564753 |
illustrated | Not Illustrated |
indexdate | 2025-04-10T09:35:26Z |
institution | BVB |
isbn | 9781491965306 1491965304 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (20 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Grus, Joel VerfasserIn aut K-means and hierarchical clustering with Python Grus, Joel 1st edition [Erscheinungsort nicht ermittelbar] O'Reilly Media, Inc. 2016 1 Online-Ressource (20 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clustering is the usual starting point for unsupervised machine learning. This lesson introduces the k-means and hierarchical clustering algorithms, implemented in Python code. Why is it important? Whenever you look at a data source, it's likely that the data will somehow form clusters. Datasets with higher dimensions become increasingly more difficult to "eyeball" based on human perception and intuition. These clustering algorithms allow you to discover similarities within data at scale, without first having to label a large training dataset. What you'll learn--and how you can apply it Understand how the k-means and hierarchical clustering algorithms work. Create classes in Python to implement these algorithms, and learn how to apply them in example applications. Identify clusters of similar inputs, and find a representative value for each cluster. Prepare to use your own implementations or reuse algorithms implemented in scikit-learn. This lesson is for you because ... People interested in data science need to learn how to implement k-means and bottom-up hierarchical clustering algorithms Prerequisites Some experience writing code in Python Experience working with data in vector or matrix format Materials or downloads needed in advance Download this code, where you'll find this lesson's code in Chapter 19, plus you'll need the linear_algebra functions from Chapter 4. This lesson is taken from Data Science from Scratch by Joel Grus Python (Computer program language) Python (Langage de programmation) |
spellingShingle | Grus, Joel K-means and hierarchical clustering with Python Python (Computer program language) Python (Langage de programmation) |
title | K-means and hierarchical clustering with Python |
title_auth | K-means and hierarchical clustering with Python |
title_exact_search | K-means and hierarchical clustering with Python |
title_full | K-means and hierarchical clustering with Python Grus, Joel |
title_fullStr | K-means and hierarchical clustering with Python Grus, Joel |
title_full_unstemmed | K-means and hierarchical clustering with Python Grus, Joel |
title_short | K-means and hierarchical clustering with Python |
title_sort | k means and hierarchical clustering with python |
topic | Python (Computer program language) Python (Langage de programmation) |
topic_facet | Python (Computer program language) Python (Langage de programmation) |
work_keys_str_mv | AT grusjoel kmeansandhierarchicalclusteringwithpython |