Interactive Spark using PySpark:
Apache Spark is an in-memory framework that allows data scientists to explore and interact with big data much more quickly than with Hadoop. Python users can work with Spark using an interactive shell called PySpark. Why is it important? PySpark makes the large-scale data processing capabilities of...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
O'Reilly Media, Inc.
2016
|
Ausgabe: | 1st edition |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781491965313/?ar |
Zusammenfassung: | Apache Spark is an in-memory framework that allows data scientists to explore and interact with big data much more quickly than with Hadoop. Python users can work with Spark using an interactive shell called PySpark. Why is it important? PySpark makes the large-scale data processing capabilities of Apache Spark accessible to data scientists who are more familiar with Python than Scala or Java. This also allows for reuse of a wide variety of Python libraries for machine learning, data visualization, numerical analysis, etc. What you'll learn--and how you can apply it Compare the different components provided by Spark, and what use cases they fit. Learn how to use RDDs (resilient distributed datasets) with PySpark. Write Spark applications in Python and submit them to the cluster as Spark jobs. Get an introduction to the Spark computing framework. Apply this approach to a worked example to determine the most frequent airline delays in a specific month and year. This lesson is for you because ... You're a data scientist, familiar with Python coding, who needs to get up and running with PySpark You're a Python developer who needs to leverage the distributed computing resources available on a Hadoop cluster, without learning Java or Scala first Prerequisites Familiarity with writing Python applications Some familiarity with bash command-line operations Basic understanding of how to use simple functional programming constructs in Python, such as closures, lambdas, maps, etc. Materials or downloads needed in advance Apache Spark This lesson is taken from Data Analytics with Hadoop by Jenny Kim and Benjamin Bengfort. |
Umfang: | 1 Online-Ressource (20 Seiten) |
ISBN: | 9781491965313 1491965312 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048560308 | ||
003 | DE-627-1 | ||
005 | 20240228120417.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2016 xx |||||o 00| ||eng c | ||
020 | |a 9781491965313 |9 978-1-4919-6531-3 | ||
020 | |a 1491965312 |9 1-4919-6531-2 | ||
035 | |a (DE-627-1)048560308 | ||
035 | |a (DE-599)KEP048560308 | ||
035 | |a (ORHE)9781491965313 | ||
035 | |a (DE-627-1)048560308 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Bengfort, Benjamin |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Interactive Spark using PySpark |c Bengfort, Benjamin |
250 | |a 1st edition | ||
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b O'Reilly Media, Inc. |c 2016 | |
300 | |a 1 Online-Ressource (20 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Apache Spark is an in-memory framework that allows data scientists to explore and interact with big data much more quickly than with Hadoop. Python users can work with Spark using an interactive shell called PySpark. Why is it important? PySpark makes the large-scale data processing capabilities of Apache Spark accessible to data scientists who are more familiar with Python than Scala or Java. This also allows for reuse of a wide variety of Python libraries for machine learning, data visualization, numerical analysis, etc. What you'll learn--and how you can apply it Compare the different components provided by Spark, and what use cases they fit. Learn how to use RDDs (resilient distributed datasets) with PySpark. Write Spark applications in Python and submit them to the cluster as Spark jobs. Get an introduction to the Spark computing framework. Apply this approach to a worked example to determine the most frequent airline delays in a specific month and year. This lesson is for you because ... You're a data scientist, familiar with Python coding, who needs to get up and running with PySpark You're a Python developer who needs to leverage the distributed computing resources available on a Hadoop cluster, without learning Java or Scala first Prerequisites Familiarity with writing Python applications Some familiarity with bash command-line operations Basic understanding of how to use simple functional programming constructs in Python, such as closures, lambdas, maps, etc. Materials or downloads needed in advance Apache Spark This lesson is taken from Data Analytics with Hadoop by Jenny Kim and Benjamin Bengfort. | ||
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Kim, Jenny |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781491965313/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-048560308 |
---|---|
_version_ | 1821494850788261888 |
adam_text | |
any_adam_object | |
author | Bengfort, Benjamin Kim, Jenny |
author_facet | Bengfort, Benjamin Kim, Jenny |
author_role | aut aut |
author_sort | Bengfort, Benjamin |
author_variant | b b bb j k jk |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048560308 (DE-599)KEP048560308 (ORHE)9781491965313 |
edition | 1st edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02920cam a22003852 4500</leader><controlfield tag="001">ZDB-30-ORH-048560308</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120417.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491965313</subfield><subfield code="9">978-1-4919-6531-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491965312</subfield><subfield code="9">1-4919-6531-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048560308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048560308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491965313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048560308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bengfort, Benjamin</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interactive Spark using PySpark</subfield><subfield code="c">Bengfort, Benjamin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (20 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Apache Spark is an in-memory framework that allows data scientists to explore and interact with big data much more quickly than with Hadoop. Python users can work with Spark using an interactive shell called PySpark. Why is it important? PySpark makes the large-scale data processing capabilities of Apache Spark accessible to data scientists who are more familiar with Python than Scala or Java. This also allows for reuse of a wide variety of Python libraries for machine learning, data visualization, numerical analysis, etc. What you'll learn--and how you can apply it Compare the different components provided by Spark, and what use cases they fit. Learn how to use RDDs (resilient distributed datasets) with PySpark. Write Spark applications in Python and submit them to the cluster as Spark jobs. Get an introduction to the Spark computing framework. Apply this approach to a worked example to determine the most frequent airline delays in a specific month and year. This lesson is for you because ... You're a data scientist, familiar with Python coding, who needs to get up and running with PySpark You're a Python developer who needs to leverage the distributed computing resources available on a Hadoop cluster, without learning Java or Scala first Prerequisites Familiarity with writing Python applications Some familiarity with bash command-line operations Basic understanding of how to use simple functional programming constructs in Python, such as closures, lambdas, maps, etc. Materials or downloads needed in advance Apache Spark This lesson is taken from Data Analytics with Hadoop by Jenny Kim and Benjamin Bengfort.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Jenny</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491965313/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048560308 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:56Z |
institution | BVB |
isbn | 9781491965313 1491965312 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (20 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Bengfort, Benjamin VerfasserIn aut Interactive Spark using PySpark Bengfort, Benjamin 1st edition [Erscheinungsort nicht ermittelbar] O'Reilly Media, Inc. 2016 1 Online-Ressource (20 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Apache Spark is an in-memory framework that allows data scientists to explore and interact with big data much more quickly than with Hadoop. Python users can work with Spark using an interactive shell called PySpark. Why is it important? PySpark makes the large-scale data processing capabilities of Apache Spark accessible to data scientists who are more familiar with Python than Scala or Java. This also allows for reuse of a wide variety of Python libraries for machine learning, data visualization, numerical analysis, etc. What you'll learn--and how you can apply it Compare the different components provided by Spark, and what use cases they fit. Learn how to use RDDs (resilient distributed datasets) with PySpark. Write Spark applications in Python and submit them to the cluster as Spark jobs. Get an introduction to the Spark computing framework. Apply this approach to a worked example to determine the most frequent airline delays in a specific month and year. This lesson is for you because ... You're a data scientist, familiar with Python coding, who needs to get up and running with PySpark You're a Python developer who needs to leverage the distributed computing resources available on a Hadoop cluster, without learning Java or Scala first Prerequisites Familiarity with writing Python applications Some familiarity with bash command-line operations Basic understanding of how to use simple functional programming constructs in Python, such as closures, lambdas, maps, etc. Materials or downloads needed in advance Apache Spark This lesson is taken from Data Analytics with Hadoop by Jenny Kim and Benjamin Bengfort. Python (Computer program language) Python (Langage de programmation) Kim, Jenny VerfasserIn aut |
spellingShingle | Bengfort, Benjamin Kim, Jenny Interactive Spark using PySpark Python (Computer program language) Python (Langage de programmation) |
title | Interactive Spark using PySpark |
title_auth | Interactive Spark using PySpark |
title_exact_search | Interactive Spark using PySpark |
title_full | Interactive Spark using PySpark Bengfort, Benjamin |
title_fullStr | Interactive Spark using PySpark Bengfort, Benjamin |
title_full_unstemmed | Interactive Spark using PySpark Bengfort, Benjamin |
title_short | Interactive Spark using PySpark |
title_sort | interactive spark using pyspark |
topic | Python (Computer program language) Python (Langage de programmation) |
topic_facet | Python (Computer program language) Python (Langage de programmation) |
work_keys_str_mv | AT bengfortbenjamin interactivesparkusingpyspark AT kimjenny interactivesparkusingpyspark |