High performance python: practical performant programming for humans
Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performanc...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Beijing Boston
O'Reilly
2020
|
Ausgabe: | Second edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781492055013/?ar |
Zusammenfassung: | Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python's implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker. |
Beschreibung: | Why Does Type Information Help the Code Run Faster?. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on June 30, 2020) |
Umfang: | 1 Online-Ressource |
ISBN: | 9781492054993 1492054992 9781492054979 1492054976 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048553999 | ||
003 | DE-627-1 | ||
005 | 20240228121045.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781492054993 |c electronic book |9 978-1-4920-5499-3 | ||
020 | |a 1492054992 |c electronic book |9 1-4920-5499-2 | ||
020 | |a 9781492054979 |c electronic book |9 978-1-4920-5497-9 | ||
020 | |a 1492054976 |c electronic book |9 1-4920-5497-6 | ||
035 | |a (DE-627-1)048553999 | ||
035 | |a (DE-599)KEP048553999 | ||
035 | |a (ORHE)9781492055013 | ||
035 | |a (DE-627-1)048553999 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.13/3 |2 23 | |
100 | 1 | |a Gorelick, Micha |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a High performance python |b practical performant programming for humans |c Micha Gorelick and Ian Ozsvald |
250 | |a Second edition. | ||
264 | 1 | |a Beijing |a Boston |b O'Reilly |c 2020 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Why Does Type Information Help the Code Run Faster?. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on June 30, 2020) | ||
520 | |a Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python's implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker. | ||
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Ozsvald, Ian |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492055013/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-048553999 |
---|---|
_version_ | 1821494851363930112 |
adam_text | |
any_adam_object | |
author | Gorelick, Micha Ozsvald, Ian |
author_facet | Gorelick, Micha Ozsvald, Ian |
author_role | aut aut |
author_sort | Gorelick, Micha |
author_variant | m g mg i o io |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048553999 (DE-599)KEP048553999 (ORHE)9781492055013 |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02904cam a22004332 4500</leader><controlfield tag="001">ZDB-30-ORH-048553999</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121045.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492054993</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4920-5499-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492054992</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4920-5499-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492054979</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4920-5497-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492054976</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4920-5497-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048553999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048553999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492055013</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048553999</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorelick, Micha</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High performance python</subfield><subfield code="b">practical performant programming for humans</subfield><subfield code="c">Micha Gorelick and Ian Ozsvald</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="a">Boston</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Why Does Type Information Help the Code Run Faster?. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on June 30, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python's implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ozsvald, Ian</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492055013/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048553999 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:57Z |
institution | BVB |
isbn | 9781492054993 1492054992 9781492054979 1492054976 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | O'Reilly |
record_format | marc |
spelling | Gorelick, Micha VerfasserIn aut High performance python practical performant programming for humans Micha Gorelick and Ian Ozsvald Second edition. Beijing Boston O'Reilly 2020 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Why Does Type Information Help the Code Run Faster?. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on June 30, 2020) Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python's implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker. Python (Computer program language) Python (Langage de programmation) Ozsvald, Ian VerfasserIn aut |
spellingShingle | Gorelick, Micha Ozsvald, Ian High performance python practical performant programming for humans Python (Computer program language) Python (Langage de programmation) |
title | High performance python practical performant programming for humans |
title_auth | High performance python practical performant programming for humans |
title_exact_search | High performance python practical performant programming for humans |
title_full | High performance python practical performant programming for humans Micha Gorelick and Ian Ozsvald |
title_fullStr | High performance python practical performant programming for humans Micha Gorelick and Ian Ozsvald |
title_full_unstemmed | High performance python practical performant programming for humans Micha Gorelick and Ian Ozsvald |
title_short | High performance python |
title_sort | high performance python practical performant programming for humans |
title_sub | practical performant programming for humans |
topic | Python (Computer program language) Python (Langage de programmation) |
topic_facet | Python (Computer program language) Python (Langage de programmation) |
work_keys_str_mv | AT gorelickmicha highperformancepythonpracticalperformantprogrammingforhumans AT ozsvaldian highperformancepythonpracticalperformantprogrammingforhumans |