Hands-On Exploratory Data Analysis with R:
Learn exploratory data analysis concepts using powerful R packages to enhance your R data analysis skills Key Features Speed up your data analysis projects using powerful R packages and techniques Create multiple hands-on data analysis projects using real-world data Discover and practice graphical e...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
Packt Publishing
2019
|
Ausgabe: | 1st edition. |
Links: | https://learning.oreilly.com/library/view/-/9781789804379/?ar |
Zusammenfassung: | Learn exploratory data analysis concepts using powerful R packages to enhance your R data analysis skills Key Features Speed up your data analysis projects using powerful R packages and techniques Create multiple hands-on data analysis projects using real-world data Discover and practice graphical exploratory analysis techniques across domains Book Description Hands-On Exploratory Data Analysis with R will help you build a strong foundation in data analysis and get well-versed with elementary ways to analyze data. You will learn how to understand your data and summarize its characteristics. You'll also study the structure of your data, and you'll explore graphical and numerical techniques using the R language. This book covers the entire exploratory data analysis (EDA) process-data collection, generating statistics, distribution, and invalidating the hypothesis. As you progress through the book, you will set up a data analysis environment with tools such as ggplot2, knitr, and R Markdown, using DOE Scatter Plot and SML2010 for multifactor, optimization, and regression data problems. By the end of this book, you will be able to successfully carry out a preliminary investigation on any dataset, uncover hidden insights, and present your results in a business context. What you will learn Learn effective R techniques that can accelerate your data analysis projects Import, clean, and explore data using powerful R packages Practice graphical exploratory analysis techniques Create informative data analysis reports using ggplot2 Identify and clean missing and erroneous data Explore data analysis techniques to analyze multi-factor datasets Who this book is for Hands-On Exploratory Data Analysis with R is for data enthusiasts who want to build a strong foundation in data analysis. If you are a data analyst, data engineer, software engineer, or product manager, this book will sharpen your skills in the complete exploratory data analysis workflow. Downloading the example code for this ebook: You can download the example code files for this ebook on GitHub at the following link: https://github.com/PacktPublishing/Hands-On-Exploratory-Data-Analysis-with-R . If you require support please email: customercarepackt.com. |
Beschreibung: | Online resource; Title from title page (viewed May 31, 2019) |
Umfang: | 1 Online-Ressource (266 Seiten) |
ISBN: | 9781789804379 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048553220 | ||
003 | DE-627-1 | ||
005 | 20240228120848.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2019 xx |||||o 00| ||eng c | ||
020 | |a 9781789804379 |9 978-1-78980-437-9 | ||
035 | |a (DE-627-1)048553220 | ||
035 | |a (DE-599)KEP048553220 | ||
035 | |a (ORHE)9781789804379 | ||
035 | |a (DE-627-1)048553220 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/12 |2 23/eng/20230216 | |
100 | 1 | |a Datar, Radhika |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Hands-On Exploratory Data Analysis with R |c Datar, Radhika |
250 | |a 1st edition. | ||
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b Packt Publishing |c 2019 | |
300 | |a 1 Online-Ressource (266 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; Title from title page (viewed May 31, 2019) | ||
520 | |a Learn exploratory data analysis concepts using powerful R packages to enhance your R data analysis skills Key Features Speed up your data analysis projects using powerful R packages and techniques Create multiple hands-on data analysis projects using real-world data Discover and practice graphical exploratory analysis techniques across domains Book Description Hands-On Exploratory Data Analysis with R will help you build a strong foundation in data analysis and get well-versed with elementary ways to analyze data. You will learn how to understand your data and summarize its characteristics. You'll also study the structure of your data, and you'll explore graphical and numerical techniques using the R language. This book covers the entire exploratory data analysis (EDA) process-data collection, generating statistics, distribution, and invalidating the hypothesis. As you progress through the book, you will set up a data analysis environment with tools such as ggplot2, knitr, and R Markdown, using DOE Scatter Plot and SML2010 for multifactor, optimization, and regression data problems. By the end of this book, you will be able to successfully carry out a preliminary investigation on any dataset, uncover hidden insights, and present your results in a business context. What you will learn Learn effective R techniques that can accelerate your data analysis projects Import, clean, and explore data using powerful R packages Practice graphical exploratory analysis techniques Create informative data analysis reports using ggplot2 Identify and clean missing and erroneous data Explore data analysis techniques to analyze multi-factor datasets Who this book is for Hands-On Exploratory Data Analysis with R is for data enthusiasts who want to build a strong foundation in data analysis. If you are a data analyst, data engineer, software engineer, or product manager, this book will sharpen your skills in the complete exploratory data analysis workflow. Downloading the example code for this ebook: You can download the example code files for this ebook on GitHub at the following link: https://github.com/PacktPublishing/Hands-On-Exploratory-Data-Analysis-with-R . If you require support please email: customercarepackt.com. | ||
700 | 1 | |a Garg, Harish |e VerfasserIn |4 aut | |
710 | 2 | |a Safari, an O'Reilly Media Company. |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781789804379/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-048553220 |
---|---|
_version_ | 1821494851429990400 |
adam_text | |
any_adam_object | |
author | Datar, Radhika Garg, Harish |
author_corporate | Safari, an O'Reilly Media Company |
author_corporate_role | ctb |
author_facet | Datar, Radhika Garg, Harish Safari, an O'Reilly Media Company |
author_role | aut aut |
author_sort | Datar, Radhika |
author_variant | r d rd h g hg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048553220 (DE-599)KEP048553220 (ORHE)9781789804379 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03521cam a22003732 4500</leader><controlfield tag="001">ZDB-30-ORH-048553220</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789804379</subfield><subfield code="9">978-1-78980-437-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048553220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048553220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781789804379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048553220</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23/eng/20230216</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Datar, Radhika</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-On Exploratory Data Analysis with R</subfield><subfield code="c">Datar, Radhika</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (266 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; Title from title page (viewed May 31, 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Learn exploratory data analysis concepts using powerful R packages to enhance your R data analysis skills Key Features Speed up your data analysis projects using powerful R packages and techniques Create multiple hands-on data analysis projects using real-world data Discover and practice graphical exploratory analysis techniques across domains Book Description Hands-On Exploratory Data Analysis with R will help you build a strong foundation in data analysis and get well-versed with elementary ways to analyze data. You will learn how to understand your data and summarize its characteristics. You'll also study the structure of your data, and you'll explore graphical and numerical techniques using the R language. This book covers the entire exploratory data analysis (EDA) process-data collection, generating statistics, distribution, and invalidating the hypothesis. As you progress through the book, you will set up a data analysis environment with tools such as ggplot2, knitr, and R Markdown, using DOE Scatter Plot and SML2010 for multifactor, optimization, and regression data problems. By the end of this book, you will be able to successfully carry out a preliminary investigation on any dataset, uncover hidden insights, and present your results in a business context. What you will learn Learn effective R techniques that can accelerate your data analysis projects Import, clean, and explore data using powerful R packages Practice graphical exploratory analysis techniques Create informative data analysis reports using ggplot2 Identify and clean missing and erroneous data Explore data analysis techniques to analyze multi-factor datasets Who this book is for Hands-On Exploratory Data Analysis with R is for data enthusiasts who want to build a strong foundation in data analysis. If you are a data analyst, data engineer, software engineer, or product manager, this book will sharpen your skills in the complete exploratory data analysis workflow. Downloading the example code for this ebook: You can download the example code files for this ebook on GitHub at the following link: https://github.com/PacktPublishing/Hands-On-Exploratory-Data-Analysis-with-R . If you require support please email: customercarepackt.com.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garg, Harish</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Safari, an O'Reilly Media Company.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781789804379/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048553220 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:57Z |
institution | BVB |
isbn | 9781789804379 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (266 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing |
record_format | marc |
spelling | Datar, Radhika VerfasserIn aut Hands-On Exploratory Data Analysis with R Datar, Radhika 1st edition. [Erscheinungsort nicht ermittelbar] Packt Publishing 2019 1 Online-Ressource (266 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; Title from title page (viewed May 31, 2019) Learn exploratory data analysis concepts using powerful R packages to enhance your R data analysis skills Key Features Speed up your data analysis projects using powerful R packages and techniques Create multiple hands-on data analysis projects using real-world data Discover and practice graphical exploratory analysis techniques across domains Book Description Hands-On Exploratory Data Analysis with R will help you build a strong foundation in data analysis and get well-versed with elementary ways to analyze data. You will learn how to understand your data and summarize its characteristics. You'll also study the structure of your data, and you'll explore graphical and numerical techniques using the R language. This book covers the entire exploratory data analysis (EDA) process-data collection, generating statistics, distribution, and invalidating the hypothesis. As you progress through the book, you will set up a data analysis environment with tools such as ggplot2, knitr, and R Markdown, using DOE Scatter Plot and SML2010 for multifactor, optimization, and regression data problems. By the end of this book, you will be able to successfully carry out a preliminary investigation on any dataset, uncover hidden insights, and present your results in a business context. What you will learn Learn effective R techniques that can accelerate your data analysis projects Import, clean, and explore data using powerful R packages Practice graphical exploratory analysis techniques Create informative data analysis reports using ggplot2 Identify and clean missing and erroneous data Explore data analysis techniques to analyze multi-factor datasets Who this book is for Hands-On Exploratory Data Analysis with R is for data enthusiasts who want to build a strong foundation in data analysis. If you are a data analyst, data engineer, software engineer, or product manager, this book will sharpen your skills in the complete exploratory data analysis workflow. Downloading the example code for this ebook: You can download the example code files for this ebook on GitHub at the following link: https://github.com/PacktPublishing/Hands-On-Exploratory-Data-Analysis-with-R . If you require support please email: customercarepackt.com. Garg, Harish VerfasserIn aut Safari, an O'Reilly Media Company. MitwirkendeR ctb |
spellingShingle | Datar, Radhika Garg, Harish Hands-On Exploratory Data Analysis with R |
title | Hands-On Exploratory Data Analysis with R |
title_auth | Hands-On Exploratory Data Analysis with R |
title_exact_search | Hands-On Exploratory Data Analysis with R |
title_full | Hands-On Exploratory Data Analysis with R Datar, Radhika |
title_fullStr | Hands-On Exploratory Data Analysis with R Datar, Radhika |
title_full_unstemmed | Hands-On Exploratory Data Analysis with R Datar, Radhika |
title_short | Hands-On Exploratory Data Analysis with R |
title_sort | hands on exploratory data analysis with r |
work_keys_str_mv | AT datarradhika handsonexploratorydataanalysiswithr AT gargharish handsonexploratorydataanalysiswithr AT safarianoreillymediacompany handsonexploratorydataanalysiswithr |