Deep learning through sparse and low-rank modeling:
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the tool...
Gespeichert in:
Weitere beteiligte Personen: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Place of publication not identified]
Academic Press, an imprint of Elsevier
[2019]
|
Schriftenreihe: | Computer vision and pattern recognition series
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9780128136607/?ar |
Zusammenfassung: | Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. |
Beschreibung: | Includes bibliographical references and index. - Vendor-supplied metadata |
Umfang: | 1 Online-Ressource |
ISBN: | 9780128136607 012813660X |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048537985 | ||
003 | DE-627-1 | ||
005 | 20240228120708.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2019 xx |||||o 00| ||eng c | ||
020 | |a 9780128136607 |c electronic bk. |9 978-0-12-813660-7 | ||
020 | |a 012813660X |c electronic bk. |9 0-12-813660-X | ||
035 | |a (DE-627-1)048537985 | ||
035 | |a (DE-599)KEP048537985 | ||
035 | |a (ORHE)9780128136607 | ||
035 | |a (DE-627-1)048537985 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
082 | 0 | |a 006.31 |2 23 | |
245 | 1 | 0 | |a Deep learning through sparse and low-rank modeling |c edited by Zhangyang Wang, Yun Fu, Thomas S. Huang |
264 | 1 | |a [Place of publication not identified] |b Academic Press, an imprint of Elsevier |c [2019] | |
264 | 4 | |c ©2019 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Computer vision and pattern recognition series | |
500 | |a Includes bibliographical references and index. - Vendor-supplied metadata | ||
520 | |a Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. | ||
650 | 0 | |a Machine learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a COMPUTERS ; General | |
650 | 4 | |a Machine learning | |
700 | 1 | |a Wang, Zhangyang |e HerausgeberIn |4 edt | |
700 | 1 | |a Fu, Yun |e HerausgeberIn |4 edt | |
700 | 1 | |a Huang, Thomas S. |d 1936- |e HerausgeberIn |4 edt | |
776 | 1 | |z 0128136596 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0128136596 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780128136607/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-048537985 |
---|---|
_version_ | 1821494852599152640 |
adam_text | |
any_adam_object | |
author2 | Wang, Zhangyang Fu, Yun Huang, Thomas S. 1936- |
author2_role | edt edt edt |
author2_variant | z w zw y f yf t s h ts tsh |
author_facet | Wang, Zhangyang Fu, Yun Huang, Thomas S. 1936- |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048537985 (DE-599)KEP048537985 (ORHE)9780128136607 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02582cam a22004812 4500</leader><controlfield tag="001">ZDB-30-ORH-048537985</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120708.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128136607</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-12-813660-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">012813660X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-12-813660-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048537985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048537985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780128136607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048537985</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning through sparse and low-rank modeling</subfield><subfield code="c">edited by Zhangyang Wang, Yun Fu, Thomas S. Huang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computer vision and pattern recognition series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Vendor-supplied metadata</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhangyang</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Yun</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Thomas S.</subfield><subfield code="d">1936-</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">0128136596</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0128136596</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780128136607/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048537985 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:58Z |
institution | BVB |
isbn | 9780128136607 012813660X |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
series2 | Computer vision and pattern recognition series |
spelling | Deep learning through sparse and low-rank modeling edited by Zhangyang Wang, Yun Fu, Thomas S. Huang [Place of publication not identified] Academic Press, an imprint of Elsevier [2019] ©2019 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computer vision and pattern recognition series Includes bibliographical references and index. - Vendor-supplied metadata Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. Machine learning Apprentissage automatique COMPUTERS ; General Wang, Zhangyang HerausgeberIn edt Fu, Yun HerausgeberIn edt Huang, Thomas S. 1936- HerausgeberIn edt 0128136596 Erscheint auch als Druck-Ausgabe 0128136596 |
spellingShingle | Deep learning through sparse and low-rank modeling Machine learning Apprentissage automatique COMPUTERS ; General |
title | Deep learning through sparse and low-rank modeling |
title_auth | Deep learning through sparse and low-rank modeling |
title_exact_search | Deep learning through sparse and low-rank modeling |
title_full | Deep learning through sparse and low-rank modeling edited by Zhangyang Wang, Yun Fu, Thomas S. Huang |
title_fullStr | Deep learning through sparse and low-rank modeling edited by Zhangyang Wang, Yun Fu, Thomas S. Huang |
title_full_unstemmed | Deep learning through sparse and low-rank modeling edited by Zhangyang Wang, Yun Fu, Thomas S. Huang |
title_short | Deep learning through sparse and low-rank modeling |
title_sort | deep learning through sparse and low rank modeling |
topic | Machine learning Apprentissage automatique COMPUTERS ; General |
topic_facet | Machine learning Apprentissage automatique COMPUTERS ; General |
work_keys_str_mv | AT wangzhangyang deeplearningthroughsparseandlowrankmodeling AT fuyun deeplearningthroughsparseandlowrankmodeling AT huangthomass deeplearningthroughsparseandlowrankmodeling |