Deep learning from scratch: building with Python from first principles
With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You'll start...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media
2019
|
Ausgabe: | First edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781492041405/?ar |
Zusammenfassung: | With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You'll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way.Author Seth Weidman shows you how neural networks work using a first principles approach. You'll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you'll be set up for success on all future deep learning projects.This book provides:Extremely clear and thorough mental models--accompanied by working code examples and mathematical explanations--for understanding neural networksMethods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented frameworkWorking implementations and clear-cut explanations of convolutional and recurrent neural networksImplementation of these neural network concepts using the popular PyTorch framework.--Provided by publisher. |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed September 16, 2019) |
Umfang: | 1 Online-Ressource (1 volume) illustrations |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048537950 | ||
003 | DE-627-1 | ||
005 | 20240228120854.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2019 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)048537950 | ||
035 | |a (DE-599)KEP048537950 | ||
035 | |a (ORHE)9781492041405 | ||
035 | |a (DE-627-1)048537950 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.13/3 |2 23 | |
100 | 1 | |a Weidman, Seth |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Deep learning from scratch |b building with Python from first principles |c Seth Weidman |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media |c 2019 | |
300 | |a 1 Online-Ressource (1 volume) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed September 16, 2019) | ||
520 | |a With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You'll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way.Author Seth Weidman shows you how neural networks work using a first principles approach. You'll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you'll be set up for success on all future deep learning projects.This book provides:Extremely clear and thorough mental models--accompanied by working code examples and mathematical explanations--for understanding neural networksMethods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented frameworkWorking implementations and clear-cut explanations of convolutional and recurrent neural networksImplementation of these neural network concepts using the popular PyTorch framework.--Provided by publisher. | ||
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Neural networks (Computer science) | |
650 | 0 | |a Artificial intelligence | |
650 | 2 | |a Neural Networks, Computer | |
650 | 2 | |a Artificial Intelligence | |
650 | 2 | |a Machine Learning | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Réseaux neuronaux (Informatique) | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Python (Computer program language) | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492041405/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-048537950 |
---|---|
_version_ | 1821494852603346944 |
adam_text | |
any_adam_object | |
author | Weidman, Seth |
author_facet | Weidman, Seth |
author_role | aut |
author_sort | Weidman, Seth |
author_variant | s w sw |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048537950 (DE-599)KEP048537950 (ORHE)9781492041405 |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03202cam a22005292 4500</leader><controlfield tag="001">ZDB-30-ORH-048537950</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120854.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048537950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048537950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492041405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048537950</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weidman, Seth</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning from scratch</subfield><subfield code="b">building with Python from first principles</subfield><subfield code="c">Seth Weidman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 volume)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed September 16, 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You'll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way.Author Seth Weidman shows you how neural networks work using a first principles approach. You'll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you'll be set up for success on all future deep learning projects.This book provides:Extremely clear and thorough mental models--accompanied by working code examples and mathematical explanations--for understanding neural networksMethods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented frameworkWorking implementations and clear-cut explanations of convolutional and recurrent neural networksImplementation of these neural network concepts using the popular PyTorch framework.--Provided by publisher.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Neural Networks, Computer</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492041405/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048537950 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:20:58Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 volume) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Weidman, Seth VerfasserIn aut Deep learning from scratch building with Python from first principles Seth Weidman First edition. Sebastopol, CA O'Reilly Media 2019 1 Online-Ressource (1 volume) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed September 16, 2019) With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You'll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way.Author Seth Weidman shows you how neural networks work using a first principles approach. You'll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you'll be set up for success on all future deep learning projects.This book provides:Extremely clear and thorough mental models--accompanied by working code examples and mathematical explanations--for understanding neural networksMethods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented frameworkWorking implementations and clear-cut explanations of convolutional and recurrent neural networksImplementation of these neural network concepts using the popular PyTorch framework.--Provided by publisher. Python (Computer program language) Machine learning Neural networks (Computer science) Artificial intelligence Neural Networks, Computer Artificial Intelligence Machine Learning Python (Langage de programmation) Apprentissage automatique Réseaux neuronaux (Informatique) Intelligence artificielle artificial intelligence |
spellingShingle | Weidman, Seth Deep learning from scratch building with Python from first principles Python (Computer program language) Machine learning Neural networks (Computer science) Artificial intelligence Neural Networks, Computer Artificial Intelligence Machine Learning Python (Langage de programmation) Apprentissage automatique Réseaux neuronaux (Informatique) Intelligence artificielle artificial intelligence |
title | Deep learning from scratch building with Python from first principles |
title_auth | Deep learning from scratch building with Python from first principles |
title_exact_search | Deep learning from scratch building with Python from first principles |
title_full | Deep learning from scratch building with Python from first principles Seth Weidman |
title_fullStr | Deep learning from scratch building with Python from first principles Seth Weidman |
title_full_unstemmed | Deep learning from scratch building with Python from first principles Seth Weidman |
title_short | Deep learning from scratch |
title_sort | deep learning from scratch building with python from first principles |
title_sub | building with Python from first principles |
topic | Python (Computer program language) Machine learning Neural networks (Computer science) Artificial intelligence Neural Networks, Computer Artificial Intelligence Machine Learning Python (Langage de programmation) Apprentissage automatique Réseaux neuronaux (Informatique) Intelligence artificielle artificial intelligence |
topic_facet | Python (Computer program language) Machine learning Neural networks (Computer science) Artificial intelligence Neural Networks, Computer Artificial Intelligence Machine Learning Python (Langage de programmation) Apprentissage automatique Réseaux neuronaux (Informatique) Intelligence artificielle artificial intelligence |
work_keys_str_mv | AT weidmanseth deeplearningfromscratchbuildingwithpythonfromfirstprinciples |