Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
New York
Apress
[2019]
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484251775/?ar |
Zusammenfassung: | Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a RNN?; What Is an LSTM?; LSTM for Anomaly Detection; Examples of Time Series; art_daily_no_noise; art_daily_nojump; art_daily_jumpsdown; art_daily_perfect_square_wave; art_load_balancer_spikes; ambient_temperature_system_failure; ec2_cpu_utilization; rds_cpu_utilization; Summary Appendix A: Intro to Keras; What Is Keras?; Using Keras; Model Creation; Model Compilation and Training; Model Evaluation and Prediction; Layers; Input Layer; Dense Layer; Activation; Dropout; Flatten; Spatial Dropout 1D; Spatial Dropout 2D; Conv1D; Conv2D; UpSampling 1D; UpSampling 2D; ZeroPadding1D; ZeroPadding2D; MaxPooling1D; MaxPooling2D; Loss Functions; Mean Squared Error; Categorical Cross Entropy; Sparse Categorical Cross Entropy; Metrics; Binary Accuracy; Categorical Accuracy; Optimizers; SGD; Adam; RMSprop; Activations; Softmax; ReLU; Sigmoid; Callbacks; ModelCheckpoint |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from PDF title page (SpringerLink, viewed October 15, 2019) |
Umfang: | 1 Online-Ressource illustrations |
ISBN: | 9781484251775 1484251776 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048522066 | ||
003 | DE-627-1 | ||
005 | 20240228120904.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2019 xx |||||o 00| ||eng c | ||
020 | |a 9781484251775 |c electronic bk. |9 978-1-4842-5177-5 | ||
020 | |a 1484251776 |c electronic bk. |9 1-4842-5177-6 | ||
035 | |a (DE-627-1)048522066 | ||
035 | |a (DE-599)KEP048522066 | ||
035 | |a (ORHE)9781484251775 | ||
035 | |a (DE-627-1)048522066 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.8 |2 23 | |
100 | 1 | |a Alla, Sridhar |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Beginning anomaly detection using Python-based deep learning |b with Keras and PyTorch |c Sridhar Alla, Suman Kalyan Adari |
264 | 1 | |a New York |b Apress |c [2019] | |
264 | 4 | |c ©2019 | |
300 | |a 1 Online-Ressource |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from PDF title page (SpringerLink, viewed October 15, 2019) | ||
520 | |a Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a RNN?; What Is an LSTM?; LSTM for Anomaly Detection; Examples of Time Series; art_daily_no_noise; art_daily_nojump; art_daily_jumpsdown; art_daily_perfect_square_wave; art_load_balancer_spikes; ambient_temperature_system_failure; ec2_cpu_utilization; rds_cpu_utilization; Summary | ||
520 | |a Appendix A: Intro to Keras; What Is Keras?; Using Keras; Model Creation; Model Compilation and Training; Model Evaluation and Prediction; Layers; Input Layer; Dense Layer; Activation; Dropout; Flatten; Spatial Dropout 1D; Spatial Dropout 2D; Conv1D; Conv2D; UpSampling 1D; UpSampling 2D; ZeroPadding1D; ZeroPadding2D; MaxPooling1D; MaxPooling2D; Loss Functions; Mean Squared Error; Categorical Cross Entropy; Sparse Categorical Cross Entropy; Metrics; Binary Accuracy; Categorical Accuracy; Optimizers; SGD; Adam; RMSprop; Activations; Softmax; ReLU; Sigmoid; Callbacks; ModelCheckpoint | ||
650 | 0 | |a Anomaly detection (Computer security) | |
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Détection d'anomalies (Sécurité informatique) | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Anomaly detection (Computer security) | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Adari, Suman Kalyan |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484251775/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-048522066 |
---|---|
_version_ | 1835903169360560129 |
adam_text | |
any_adam_object | |
author | Alla, Sridhar Adari, Suman Kalyan |
author_facet | Alla, Sridhar Adari, Suman Kalyan |
author_role | aut aut |
author_sort | Alla, Sridhar |
author_variant | s a sa s k a sk ska |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048522066 (DE-599)KEP048522066 (ORHE)9781484251775 |
dewey-full | 005.8 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.8 |
dewey-search | 005.8 |
dewey-sort | 15.8 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02876cam a22004572c 4500</leader><controlfield tag="001">ZDB-30-ORH-048522066</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120904.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484251775</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-5177-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484251776</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-5177-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048522066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048522066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484251775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048522066</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alla, Sridhar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beginning anomaly detection using Python-based deep learning</subfield><subfield code="b">with Keras and PyTorch</subfield><subfield code="c">Sridhar Alla, Suman Kalyan Adari</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Apress</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from PDF title page (SpringerLink, viewed October 15, 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a RNN?; What Is an LSTM?; LSTM for Anomaly Detection; Examples of Time Series; art_daily_no_noise; art_daily_nojump; art_daily_jumpsdown; art_daily_perfect_square_wave; art_load_balancer_spikes; ambient_temperature_system_failure; ec2_cpu_utilization; rds_cpu_utilization; Summary</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Appendix A: Intro to Keras; What Is Keras?; Using Keras; Model Creation; Model Compilation and Training; Model Evaluation and Prediction; Layers; Input Layer; Dense Layer; Activation; Dropout; Flatten; Spatial Dropout 1D; Spatial Dropout 2D; Conv1D; Conv2D; UpSampling 1D; UpSampling 2D; ZeroPadding1D; ZeroPadding2D; MaxPooling1D; MaxPooling2D; Loss Functions; Mean Squared Error; Categorical Cross Entropy; Sparse Categorical Cross Entropy; Metrics; Binary Accuracy; Categorical Accuracy; Optimizers; SGD; Adam; RMSprop; Activations; Softmax; ReLU; Sigmoid; Callbacks; ModelCheckpoint</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Anomaly detection (Computer security)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Détection d'anomalies (Sécurité informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anomaly detection (Computer security)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adari, Suman Kalyan</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484251775/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048522066 |
illustrated | Illustrated |
indexdate | 2025-06-25T12:14:59Z |
institution | BVB |
isbn | 9781484251775 1484251776 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Apress |
record_format | marc |
spelling | Alla, Sridhar VerfasserIn aut Beginning anomaly detection using Python-based deep learning with Keras and PyTorch Sridhar Alla, Suman Kalyan Adari New York Apress [2019] ©2019 1 Online-Ressource illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from PDF title page (SpringerLink, viewed October 15, 2019) Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a RNN?; What Is an LSTM?; LSTM for Anomaly Detection; Examples of Time Series; art_daily_no_noise; art_daily_nojump; art_daily_jumpsdown; art_daily_perfect_square_wave; art_load_balancer_spikes; ambient_temperature_system_failure; ec2_cpu_utilization; rds_cpu_utilization; Summary Appendix A: Intro to Keras; What Is Keras?; Using Keras; Model Creation; Model Compilation and Training; Model Evaluation and Prediction; Layers; Input Layer; Dense Layer; Activation; Dropout; Flatten; Spatial Dropout 1D; Spatial Dropout 2D; Conv1D; Conv2D; UpSampling 1D; UpSampling 2D; ZeroPadding1D; ZeroPadding2D; MaxPooling1D; MaxPooling2D; Loss Functions; Mean Squared Error; Categorical Cross Entropy; Sparse Categorical Cross Entropy; Metrics; Binary Accuracy; Categorical Accuracy; Optimizers; SGD; Adam; RMSprop; Activations; Softmax; ReLU; Sigmoid; Callbacks; ModelCheckpoint Anomaly detection (Computer security) Python (Computer program language) Détection d'anomalies (Sécurité informatique) Python (Langage de programmation) Adari, Suman Kalyan VerfasserIn aut |
spellingShingle | Alla, Sridhar Adari, Suman Kalyan Beginning anomaly detection using Python-based deep learning with Keras and PyTorch Anomaly detection (Computer security) Python (Computer program language) Détection d'anomalies (Sécurité informatique) Python (Langage de programmation) |
title | Beginning anomaly detection using Python-based deep learning with Keras and PyTorch |
title_auth | Beginning anomaly detection using Python-based deep learning with Keras and PyTorch |
title_exact_search | Beginning anomaly detection using Python-based deep learning with Keras and PyTorch |
title_full | Beginning anomaly detection using Python-based deep learning with Keras and PyTorch Sridhar Alla, Suman Kalyan Adari |
title_fullStr | Beginning anomaly detection using Python-based deep learning with Keras and PyTorch Sridhar Alla, Suman Kalyan Adari |
title_full_unstemmed | Beginning anomaly detection using Python-based deep learning with Keras and PyTorch Sridhar Alla, Suman Kalyan Adari |
title_short | Beginning anomaly detection using Python-based deep learning |
title_sort | beginning anomaly detection using python based deep learning with keras and pytorch |
title_sub | with Keras and PyTorch |
topic | Anomaly detection (Computer security) Python (Computer program language) Détection d'anomalies (Sécurité informatique) Python (Langage de programmation) |
topic_facet | Anomaly detection (Computer security) Python (Computer program language) Détection d'anomalies (Sécurité informatique) Python (Langage de programmation) |
work_keys_str_mv | AT allasridhar beginninganomalydetectionusingpythonbaseddeeplearningwithkerasandpytorch AT adarisumankalyan beginninganomalydetectionusingpythonbaseddeeplearningwithkerasandpytorch |