Mahout in action:
Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes free access to audio and video clips at http://www.manning.com/owen/extras/...
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Shelter Island, NY
Manning Publications
2011
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781935182689/?ar |
Zusammenfassung: | Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes free access to audio and video clips at http://www.manning.com/owen/extras/ . About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java - no prior experience with Mahout is assumed. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me. |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from PDF title page (Safari, viewed Jan. 8, 2013) |
Umfang: | 1 Online-Ressource (1 volume) illustrations |
ISBN: | 1935182684 9781935182689 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047757604 | ||
003 | DE-627-1 | ||
005 | 20240228115123.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2011 xx |||||o 00| ||eng c | ||
020 | |a 1935182684 |9 1-935182-68-4 | ||
020 | |a 9781935182689 |9 978-1-935182-68-9 | ||
020 | |a 9781935182689 |9 978-1-935182-68-9 | ||
035 | |a (DE-627-1)047757604 | ||
035 | |a (DE-599)KEP047757604 | ||
035 | |a (ORHE)9781935182689 | ||
035 | |a (DE-627-1)047757604 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.31 | |
245 | 1 | 0 | |a Mahout in action |c Sean Owen [and others] |
264 | 1 | |a Shelter Island, NY |b Manning Publications |c 2011 | |
300 | |a 1 Online-Ressource (1 volume) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from PDF title page (Safari, viewed Jan. 8, 2013) | ||
520 | |a Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes free access to audio and video clips at http://www.manning.com/owen/extras/ . About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java - no prior experience with Mahout is assumed. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me. | ||
630 | 2 | 0 | |a Mahout (Electronic resource) |
650 | 0 | |a Machine learning | |
650 | 0 | |a Web site development | |
650 | 4 | |a Mahout (Electronic resource) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Sites Web ; Développement | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Web site development | |
700 | 1 | |a Owen, Sean |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781935182689/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047757604 |
---|---|
_version_ | 1821494857728786432 |
adam_text | |
any_adam_object | |
author2 | Owen, Sean |
author2_role | ctb |
author2_variant | s o so |
author_facet | Owen, Sean |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047757604 (DE-599)KEP047757604 (ORHE)9781935182689 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03502cam a22004572 4500</leader><controlfield tag="001">ZDB-30-ORH-047757604</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228115123.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1935182684</subfield><subfield code="9">1-935182-68-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781935182689</subfield><subfield code="9">978-1-935182-68-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781935182689</subfield><subfield code="9">978-1-935182-68-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047757604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047757604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781935182689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047757604</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mahout in action</subfield><subfield code="c">Sean Owen [and others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Shelter Island, NY</subfield><subfield code="b">Manning Publications</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 volume)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from PDF title page (Safari, viewed Jan. 8, 2013)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes free access to audio and video clips at http://www.manning.com/owen/extras/ . About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java - no prior experience with Mahout is assumed. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">Mahout (Electronic resource)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Web site development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mahout (Electronic resource)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sites Web ; Développement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Web site development</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Owen, Sean</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781935182689/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047757604 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:21:03Z |
institution | BVB |
isbn | 1935182684 9781935182689 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 volume) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Manning Publications |
record_format | marc |
spelling | Mahout in action Sean Owen [and others] Shelter Island, NY Manning Publications 2011 1 Online-Ressource (1 volume) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from PDF title page (Safari, viewed Jan. 8, 2013) Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes free access to audio and video clips at http://www.manning.com/owen/extras/ . About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java - no prior experience with Mahout is assumed. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me. Mahout (Electronic resource) Machine learning Web site development Apprentissage automatique Sites Web ; Développement Owen, Sean MitwirkendeR ctb |
spellingShingle | Mahout in action Mahout (Electronic resource) Machine learning Web site development Apprentissage automatique Sites Web ; Développement |
title | Mahout in action |
title_auth | Mahout in action |
title_exact_search | Mahout in action |
title_full | Mahout in action Sean Owen [and others] |
title_fullStr | Mahout in action Sean Owen [and others] |
title_full_unstemmed | Mahout in action Sean Owen [and others] |
title_short | Mahout in action |
title_sort | mahout in action |
topic | Mahout (Electronic resource) Machine learning Web site development Apprentissage automatique Sites Web ; Développement |
topic_facet | Mahout (Electronic resource) Machine learning Web site development Apprentissage automatique Sites Web ; Développement |
work_keys_str_mv | AT owensean mahoutinaction |