Hands-on data science for marketing: improve your marketing strategies with machine learning using Python and R
Section 2: Descriptive Versus Explanatory Analysis; Chapter 2: Key Performance Indicators and Visualizations; KPIs to measure performances of different marketing efforts; Sales revenue; Cost per acquisition (CPA); Digital marketing KPIs; Computing and visualizing KPIs using Python; Aggregate convers...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham, UK
Packt Publishing
2019
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781789346343/?ar |
Zusammenfassung: | Section 2: Descriptive Versus Explanatory Analysis; Chapter 2: Key Performance Indicators and Visualizations; KPIs to measure performances of different marketing efforts; Sales revenue; Cost per acquisition (CPA); Digital marketing KPIs; Computing and visualizing KPIs using Python; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Computing and visualizing KPIs using R; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Summary This book will be an excellent resource for both Python and R developers and will help them apply data science and machine learning to marketing with real-world data sets. By the end of this book, you will be well equipped with the required knowledge and expertise to draw insights from data and improve your marketing strategies. |
Beschreibung: | Online resource; title from title page (Safari, viewed May 1, 2019) |
Umfang: | 1 Online-Ressource illustrations |
ISBN: | 178934882X 9781789348828 1789346347 9781789346343 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047726857 | ||
003 | DE-627-1 | ||
005 | 20240228120718.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2019 xx |||||o 00| ||eng c | ||
020 | |a 178934882X |9 1-78934-882-X | ||
020 | |a 9781789348828 |c electronic bk. |9 978-1-78934-882-8 | ||
020 | |a 1789346347 |9 1-78934-634-7 | ||
020 | |a 9781789346343 |9 978-1-78934-634-3 | ||
020 | |a 9781789346343 |9 978-1-78934-634-3 | ||
035 | |a (DE-627-1)047726857 | ||
035 | |a (DE-599)KEP047726857 | ||
035 | |a (ORHE)9781789346343 | ||
035 | |a (DE-627-1)047726857 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 658.834 |2 23 | |
100 | 1 | |a Hwang, Yoon Hyup |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Hands-on data science for marketing |b improve your marketing strategies with machine learning using Python and R |c Yoon Hyup Hwang |
264 | 1 | |a Birmingham, UK |b Packt Publishing |c 2019 | |
300 | |a 1 Online-Ressource |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; title from title page (Safari, viewed May 1, 2019) | ||
520 | |a Section 2: Descriptive Versus Explanatory Analysis; Chapter 2: Key Performance Indicators and Visualizations; KPIs to measure performances of different marketing efforts; Sales revenue; Cost per acquisition (CPA); Digital marketing KPIs; Computing and visualizing KPIs using Python; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Computing and visualizing KPIs using R; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Summary | ||
520 | |a This book will be an excellent resource for both Python and R developers and will help them apply data science and machine learning to marketing with real-world data sets. By the end of this book, you will be well equipped with the required knowledge and expertise to draw insights from data and improve your marketing strategies. | ||
650 | 0 | |a Marketing |x Data processing | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Marketing research | |
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a R (Computer program language) | |
650 | 4 | |a Marketing ; Informatique | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Marketing ; Recherche | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a R (Langage de programmation) | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Marketing ; Data processing | |
650 | 4 | |a Marketing research | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a R (Computer program language) | |
776 | 1 | |z 9781789346343 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781789346343 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781789346343/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047726857 |
---|---|
_version_ | 1821494859939184640 |
adam_text | |
any_adam_object | |
author | Hwang, Yoon Hyup |
author_facet | Hwang, Yoon Hyup |
author_role | aut |
author_sort | Hwang, Yoon Hyup |
author_variant | y h h yh yhh |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047726857 (DE-599)KEP047726857 (ORHE)9781789346343 |
dewey-full | 658.834 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.834 |
dewey-search | 658.834 |
dewey-sort | 3658.834 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03039cam a22006012 4500</leader><controlfield tag="001">ZDB-30-ORH-047726857</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">178934882X</subfield><subfield code="9">1-78934-882-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789348828</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-78934-882-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789346347</subfield><subfield code="9">1-78934-634-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789346343</subfield><subfield code="9">978-1-78934-634-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789346343</subfield><subfield code="9">978-1-78934-634-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047726857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047726857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781789346343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047726857</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.834</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hwang, Yoon Hyup</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-on data science for marketing</subfield><subfield code="b">improve your marketing strategies with machine learning using Python and R</subfield><subfield code="c">Yoon Hyup Hwang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title page (Safari, viewed May 1, 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Section 2: Descriptive Versus Explanatory Analysis; Chapter 2: Key Performance Indicators and Visualizations; KPIs to measure performances of different marketing efforts; Sales revenue; Cost per acquisition (CPA); Digital marketing KPIs; Computing and visualizing KPIs using Python; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Computing and visualizing KPIs using R; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Summary</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book will be an excellent resource for both Python and R developers and will help them apply data science and machine learning to marketing with real-world data sets. By the end of this book, you will be well equipped with the required knowledge and expertise to draw insights from data and improve your marketing strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Marketing</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Marketing research</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing ; Recherche</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781789346343</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781789346343</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781789346343/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047726857 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:21:05Z |
institution | BVB |
isbn | 178934882X 9781789348828 1789346347 9781789346343 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing |
record_format | marc |
spelling | Hwang, Yoon Hyup VerfasserIn aut Hands-on data science for marketing improve your marketing strategies with machine learning using Python and R Yoon Hyup Hwang Birmingham, UK Packt Publishing 2019 1 Online-Ressource illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; title from title page (Safari, viewed May 1, 2019) Section 2: Descriptive Versus Explanatory Analysis; Chapter 2: Key Performance Indicators and Visualizations; KPIs to measure performances of different marketing efforts; Sales revenue; Cost per acquisition (CPA); Digital marketing KPIs; Computing and visualizing KPIs using Python; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Computing and visualizing KPIs using R; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Summary This book will be an excellent resource for both Python and R developers and will help them apply data science and machine learning to marketing with real-world data sets. By the end of this book, you will be well equipped with the required knowledge and expertise to draw insights from data and improve your marketing strategies. Marketing Data processing Machine learning Marketing research Python (Computer program language) R (Computer program language) Marketing ; Informatique Apprentissage automatique Marketing ; Recherche Python (Langage de programmation) R (Langage de programmation) Marketing ; Data processing 9781789346343 Erscheint auch als Druck-Ausgabe 9781789346343 |
spellingShingle | Hwang, Yoon Hyup Hands-on data science for marketing improve your marketing strategies with machine learning using Python and R Marketing Data processing Machine learning Marketing research Python (Computer program language) R (Computer program language) Marketing ; Informatique Apprentissage automatique Marketing ; Recherche Python (Langage de programmation) R (Langage de programmation) Marketing ; Data processing |
title | Hands-on data science for marketing improve your marketing strategies with machine learning using Python and R |
title_auth | Hands-on data science for marketing improve your marketing strategies with machine learning using Python and R |
title_exact_search | Hands-on data science for marketing improve your marketing strategies with machine learning using Python and R |
title_full | Hands-on data science for marketing improve your marketing strategies with machine learning using Python and R Yoon Hyup Hwang |
title_fullStr | Hands-on data science for marketing improve your marketing strategies with machine learning using Python and R Yoon Hyup Hwang |
title_full_unstemmed | Hands-on data science for marketing improve your marketing strategies with machine learning using Python and R Yoon Hyup Hwang |
title_short | Hands-on data science for marketing |
title_sort | hands on data science for marketing improve your marketing strategies with machine learning using python and r |
title_sub | improve your marketing strategies with machine learning using Python and R |
topic | Marketing Data processing Machine learning Marketing research Python (Computer program language) R (Computer program language) Marketing ; Informatique Apprentissage automatique Marketing ; Recherche Python (Langage de programmation) R (Langage de programmation) Marketing ; Data processing |
topic_facet | Marketing Data processing Machine learning Marketing research Python (Computer program language) R (Computer program language) Marketing ; Informatique Apprentissage automatique Marketing ; Recherche Python (Langage de programmation) R (Langage de programmation) Marketing ; Data processing |
work_keys_str_mv | AT hwangyoonhyup handsondatascienceformarketingimproveyourmarketingstrategieswithmachinelearningusingpythonandr |