Making sense of stream processing: the philosophy behind Apache Kafka and scalable stream data platforms
How can event streams help make your application more scalable, reliable, and maintainable? In this report, O'Reilly author Martin Kleppmann shows you how stream processing can make your data storage and processing systems more flexible and less complex. Structuring data as a stream of events i...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Sebastopol, CA
O'Reilly Media
2016
|
Edition: | First edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781492042563/?ar |
Summary: | How can event streams help make your application more scalable, reliable, and maintainable? In this report, O'Reilly author Martin Kleppmann shows you how stream processing can make your data storage and processing systems more flexible and less complex. Structuring data as a stream of events isn't new, but with the advent of open source projects such as Apache Kafka and Apache Samza, stream processing is finally coming of age. Using several case studies, Kleppmann explains how these projects can help you reorient your database architecture around streams and materialized views. The benefits of this approach include better data quality, faster queries through precomputed caches, and real-time user interfaces. Learn how to open up your data for richer analysis and make your applications more scalable and robust in the face of failures. Understand stream processing fundamentals and their similarities to event sourcing, CQRS, and complex event processing Learn how logs can make search indexes and caches easier to maintain Explore the integration of databases with event streams, using the new Bottled Water open source tool Turn your database architecture inside out by orienting it around streams and materialized views. |
Item Description: | Online resource; title from title page (viewed January 10, 2019) |
Physical Description: | 1 Online-Ressource (1 volume) Illustrationen |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047629266 | ||
003 | DE-627-1 | ||
005 | 20240228120629.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2016 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)047629266 | ||
035 | |a (DE-599)KEP047629266 | ||
035 | |a (ORHE)9781492042563 | ||
035 | |a (DE-627-1)047629266 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Kleppmann, Martin |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Making sense of stream processing |b the philosophy behind Apache Kafka and scalable stream data platforms |c Martin Kleppmann |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media |c 2016 | |
300 | |a 1 Online-Ressource (1 volume) |b Illustrationen | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; title from title page (viewed January 10, 2019) | ||
520 | |a How can event streams help make your application more scalable, reliable, and maintainable? In this report, O'Reilly author Martin Kleppmann shows you how stream processing can make your data storage and processing systems more flexible and less complex. Structuring data as a stream of events isn't new, but with the advent of open source projects such as Apache Kafka and Apache Samza, stream processing is finally coming of age. Using several case studies, Kleppmann explains how these projects can help you reorient your database architecture around streams and materialized views. The benefits of this approach include better data quality, faster queries through precomputed caches, and real-time user interfaces. Learn how to open up your data for richer analysis and make your applications more scalable and robust in the face of failures. Understand stream processing fundamentals and their similarities to event sourcing, CQRS, and complex event processing Learn how logs can make search indexes and caches easier to maintain Explore the integration of databases with event streams, using the new Bottled Water open source tool Turn your database architecture inside out by orienting it around streams and materialized views. | ||
650 | 0 | |a Electronic data processing | |
650 | 0 | |a Big data |x Data processing | |
650 | 0 | |a Data mining | |
650 | 0 | |a SQL (Computer program language) | |
650 | 2 | |a Data Mining | |
650 | 4 | |a Données volumineuses ; Informatique | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a SQL (Langage de programmation) | |
650 | 4 | |a Data mining | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a SQL (Computer program language) | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492042563/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-047629266 |
---|---|
_version_ | 1831287086680899585 |
adam_text | |
any_adam_object | |
author | Kleppmann, Martin |
author_facet | Kleppmann, Martin |
author_role | aut |
author_sort | Kleppmann, Martin |
author_variant | m k mk |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047629266 (DE-599)KEP047629266 (ORHE)9781492042563 |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02837cam a22004572c 4500</leader><controlfield tag="001">ZDB-30-ORH-047629266</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120629.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047629266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047629266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492042563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047629266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kleppmann, Martin</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Making sense of stream processing</subfield><subfield code="b">the philosophy behind Apache Kafka and scalable stream data platforms</subfield><subfield code="c">Martin Kleppmann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 volume)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title page (viewed January 10, 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">How can event streams help make your application more scalable, reliable, and maintainable? In this report, O'Reilly author Martin Kleppmann shows you how stream processing can make your data storage and processing systems more flexible and less complex. Structuring data as a stream of events isn't new, but with the advent of open source projects such as Apache Kafka and Apache Samza, stream processing is finally coming of age. Using several case studies, Kleppmann explains how these projects can help you reorient your database architecture around streams and materialized views. The benefits of this approach include better data quality, faster queries through precomputed caches, and real-time user interfaces. Learn how to open up your data for richer analysis and make your applications more scalable and robust in the face of failures. Understand stream processing fundamentals and their similarities to event sourcing, CQRS, and complex event processing Learn how logs can make search indexes and caches easier to maintain Explore the integration of databases with event streams, using the new Bottled Water open source tool Turn your database architecture inside out by orienting it around streams and materialized views.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">SQL (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SQL (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SQL (Computer program language)</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492042563/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047629266 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:24:20Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 volume) Illustrationen |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Kleppmann, Martin VerfasserIn aut Making sense of stream processing the philosophy behind Apache Kafka and scalable stream data platforms Martin Kleppmann First edition. Sebastopol, CA O'Reilly Media 2016 1 Online-Ressource (1 volume) Illustrationen Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; title from title page (viewed January 10, 2019) How can event streams help make your application more scalable, reliable, and maintainable? In this report, O'Reilly author Martin Kleppmann shows you how stream processing can make your data storage and processing systems more flexible and less complex. Structuring data as a stream of events isn't new, but with the advent of open source projects such as Apache Kafka and Apache Samza, stream processing is finally coming of age. Using several case studies, Kleppmann explains how these projects can help you reorient your database architecture around streams and materialized views. The benefits of this approach include better data quality, faster queries through precomputed caches, and real-time user interfaces. Learn how to open up your data for richer analysis and make your applications more scalable and robust in the face of failures. Understand stream processing fundamentals and their similarities to event sourcing, CQRS, and complex event processing Learn how logs can make search indexes and caches easier to maintain Explore the integration of databases with event streams, using the new Bottled Water open source tool Turn your database architecture inside out by orienting it around streams and materialized views. Electronic data processing Big data Data processing Data mining SQL (Computer program language) Data Mining Données volumineuses ; Informatique Exploration de données (Informatique) SQL (Langage de programmation) |
spellingShingle | Kleppmann, Martin Making sense of stream processing the philosophy behind Apache Kafka and scalable stream data platforms Electronic data processing Big data Data processing Data mining SQL (Computer program language) Data Mining Données volumineuses ; Informatique Exploration de données (Informatique) SQL (Langage de programmation) |
title | Making sense of stream processing the philosophy behind Apache Kafka and scalable stream data platforms |
title_auth | Making sense of stream processing the philosophy behind Apache Kafka and scalable stream data platforms |
title_exact_search | Making sense of stream processing the philosophy behind Apache Kafka and scalable stream data platforms |
title_full | Making sense of stream processing the philosophy behind Apache Kafka and scalable stream data platforms Martin Kleppmann |
title_fullStr | Making sense of stream processing the philosophy behind Apache Kafka and scalable stream data platforms Martin Kleppmann |
title_full_unstemmed | Making sense of stream processing the philosophy behind Apache Kafka and scalable stream data platforms Martin Kleppmann |
title_short | Making sense of stream processing |
title_sort | making sense of stream processing the philosophy behind apache kafka and scalable stream data platforms |
title_sub | the philosophy behind Apache Kafka and scalable stream data platforms |
topic | Electronic data processing Big data Data processing Data mining SQL (Computer program language) Data Mining Données volumineuses ; Informatique Exploration de données (Informatique) SQL (Langage de programmation) |
topic_facet | Electronic data processing Big data Data processing Data mining SQL (Computer program language) Data Mining Données volumineuses ; Informatique Exploration de données (Informatique) SQL (Langage de programmation) |
work_keys_str_mv | AT kleppmannmartin makingsenseofstreamprocessingthephilosophybehindapachekafkaandscalablestreamdataplatforms |