Text mining with R: a tidy approach

Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Silge, Julia (VerfasserIn), Robinson, David (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Sebastopol, CA O'Reilly Media 2017
Ausgabe:First edition.
Schlagwörter:
Links:https://learning.oreilly.com/library/view/-/9781491981641/?ar
Zusammenfassung:Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.--
Beschreibung:Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed June 20, 2017)
Umfang:1 Online-Ressource
ISBN:9781491981627
1491981628
9781491981603
1491981601
1491981652
9781491981658