Text mining with R: a tidy approach
Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson d...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media
2017
|
Ausgabe: | First edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781491981641/?ar |
Zusammenfassung: | Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.-- |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed June 20, 2017) |
Umfang: | 1 Online-Ressource |
ISBN: | 9781491981627 1491981628 9781491981603 1491981601 1491981652 9781491981658 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-04762065X | ||
003 | DE-627-1 | ||
005 | 20240228120306.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2017 xx |||||o 00| ||eng c | ||
020 | |a 9781491981627 |c electronic bk. |9 978-1-4919-8162-7 | ||
020 | |a 1491981628 |c electronic bk. |9 1-4919-8162-8 | ||
020 | |a 9781491981603 |c electronic bk. |9 978-1-4919-8160-3 | ||
020 | |a 1491981601 |c electronic bk. |9 1-4919-8160-1 | ||
020 | |a 1491981652 |9 1-4919-8165-2 | ||
020 | |a 9781491981658 |9 978-1-4919-8165-8 | ||
035 | |a (DE-627-1)04762065X | ||
035 | |a (DE-599)KEP04762065X | ||
035 | |a (ORHE)9781491981641 | ||
035 | |a (DE-627-1)04762065X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a MAT |2 bisacsh | |
072 | 7 | |a MAT |2 bisacsh | |
082 | 0 | |a 519.502855133 |2 23 | |
100 | 1 | |a Silge, Julia |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Text mining with R |b a tidy approach |c Julia Silge and David Robinson |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media |c 2017 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed June 20, 2017) | ||
520 | |a Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.-- | ||
650 | 0 | |a R (Computer program language) | |
650 | 0 | |a Data mining | |
650 | 0 | |a Discourse analysis |x Data processing | |
650 | 0 | |a Natural language processing (Computer science) | |
650 | 2 | |a Data Mining | |
650 | 2 | |a Natural Language Processing | |
650 | 4 | |a R (Langage de programmation) | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Traitement automatique des langues naturelles | |
650 | 4 | |a MATHEMATICS ; Applied | |
650 | 4 | |a MATHEMATICS ; Probability & Statistics ; General | |
650 | 4 | |a Natural language processing (Computer science) | |
650 | 4 | |a Discourse analysis ; Data processing | |
650 | 4 | |a Data mining | |
650 | 4 | |a R (Computer program language) | |
700 | 1 | |a Robinson, David |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781491981641/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-04762065X |
---|---|
_version_ | 1831287087746252801 |
adam_text | |
any_adam_object | |
author | Silge, Julia Robinson, David |
author_facet | Silge, Julia Robinson, David |
author_role | aut aut |
author_sort | Silge, Julia |
author_variant | j s js d r dr |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)04762065X (DE-599)KEP04762065X (ORHE)9781491981641 |
dewey-full | 519.502855133 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.502855133 |
dewey-search | 519.502855133 |
dewey-sort | 3519.502855133 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03131cam a22006252c 4500</leader><controlfield tag="001">ZDB-30-ORH-04762065X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120306.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491981627</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4919-8162-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491981628</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4919-8162-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491981603</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4919-8160-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491981601</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4919-8160-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491981652</subfield><subfield code="9">1-4919-8165-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491981658</subfield><subfield code="9">978-1-4919-8165-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04762065X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP04762065X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491981641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04762065X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.502855133</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silge, Julia</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Text mining with R</subfield><subfield code="b">a tidy approach</subfield><subfield code="c">Julia Silge and David Robinson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed June 20, 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.--</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Discourse analysis</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Natural Language Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Applied</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Probability & Statistics ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discourse analysis ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, David</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491981641/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-04762065X |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:24:21Z |
institution | BVB |
isbn | 9781491981627 1491981628 9781491981603 1491981601 1491981652 9781491981658 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Silge, Julia VerfasserIn aut Text mining with R a tidy approach Julia Silge and David Robinson First edition. Sebastopol, CA O'Reilly Media 2017 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed June 20, 2017) Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.-- R (Computer program language) Data mining Discourse analysis Data processing Natural language processing (Computer science) Data Mining Natural Language Processing R (Langage de programmation) Exploration de données (Informatique) Traitement automatique des langues naturelles MATHEMATICS ; Applied MATHEMATICS ; Probability & Statistics ; General Discourse analysis ; Data processing Robinson, David VerfasserIn aut |
spellingShingle | Silge, Julia Robinson, David Text mining with R a tidy approach R (Computer program language) Data mining Discourse analysis Data processing Natural language processing (Computer science) Data Mining Natural Language Processing R (Langage de programmation) Exploration de données (Informatique) Traitement automatique des langues naturelles MATHEMATICS ; Applied MATHEMATICS ; Probability & Statistics ; General Discourse analysis ; Data processing |
title | Text mining with R a tidy approach |
title_auth | Text mining with R a tidy approach |
title_exact_search | Text mining with R a tidy approach |
title_full | Text mining with R a tidy approach Julia Silge and David Robinson |
title_fullStr | Text mining with R a tidy approach Julia Silge and David Robinson |
title_full_unstemmed | Text mining with R a tidy approach Julia Silge and David Robinson |
title_short | Text mining with R |
title_sort | text mining with r a tidy approach |
title_sub | a tidy approach |
topic | R (Computer program language) Data mining Discourse analysis Data processing Natural language processing (Computer science) Data Mining Natural Language Processing R (Langage de programmation) Exploration de données (Informatique) Traitement automatique des langues naturelles MATHEMATICS ; Applied MATHEMATICS ; Probability & Statistics ; General Discourse analysis ; Data processing |
topic_facet | R (Computer program language) Data mining Discourse analysis Data processing Natural language processing (Computer science) Data Mining Natural Language Processing R (Langage de programmation) Exploration de données (Informatique) Traitement automatique des langues naturelles MATHEMATICS ; Applied MATHEMATICS ; Probability & Statistics ; General Discourse analysis ; Data processing |
work_keys_str_mv | AT silgejulia textminingwithratidyapproach AT robinsondavid textminingwithratidyapproach |