MATLAB machine learning recipes: a problem-solution approach
Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable....
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
New York
Apress
[2019]
|
Ausgabe: | Second edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484239162/?ar |
Zusammenfassung: | Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big data. |
Beschreibung: | Includes bibliographical references and index. - Vendor-supplied metadata |
Umfang: | 1 Online-Ressource illustrations |
ISBN: | 9781484239162 1484239164 1484252411 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047608994 | ||
003 | DE-627-1 | ||
005 | 20240228120636.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2019 xx |||||o 00| ||eng c | ||
020 | |a 9781484239162 |c electronic bk. |9 978-1-4842-3916-2 | ||
020 | |a 1484239164 |c electronic bk. |9 1-4842-3916-4 | ||
020 | |a 1484252411 |9 1-4842-5241-1 | ||
035 | |a (DE-627-1)047608994 | ||
035 | |a (DE-599)KEP047608994 | ||
035 | |a (ORHE)9781484239162 | ||
035 | |a (DE-627-1)047608994 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a UYQ |2 bicssc | |
082 | 0 | |a 006.3/1 |2 23 | |
100 | 1 | |a Paluszek, Michael |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a MATLAB machine learning recipes |b a problem-solution approach |c Michael Paluszek and Stephanie Thomas |
250 | |a Second edition. | ||
264 | 1 | |a New York |b Apress |c [2019] | |
264 | 4 | |c ©2019 | |
300 | |a 1 Online-Ressource |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Vendor-supplied metadata | ||
520 | |a Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big data. | ||
630 | 2 | 0 | |a MATLAB |
650 | 0 | |a Machine learning | |
650 | 4 | |a MATLAB | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a COMPUTERS ; General | |
650 | 4 | |a Machine learning | |
700 | 1 | |a Thomas, Stephanie |e VerfasserIn |4 aut | |
776 | 1 | |z 9781484239155 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781484239155 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484239162/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047608994 |
---|---|
_version_ | 1821494873287557120 |
adam_text | |
any_adam_object | |
author | Paluszek, Michael Thomas, Stephanie |
author_facet | Paluszek, Michael Thomas, Stephanie |
author_role | aut aut |
author_sort | Paluszek, Michael |
author_variant | m p mp s t st |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047608994 (DE-599)KEP047608994 (ORHE)9781484239162 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02746cam a22005172 4500</leader><controlfield tag="001">ZDB-30-ORH-047608994</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120636.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484239162</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-3916-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484239164</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-3916-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484252411</subfield><subfield code="9">1-4842-5241-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047608994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047608994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484239162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047608994</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paluszek, Michael</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MATLAB machine learning recipes</subfield><subfield code="b">a problem-solution approach</subfield><subfield code="c">Michael Paluszek and Stephanie Thomas</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Apress</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Vendor-supplied metadata</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big data.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">MATLAB</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATLAB</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas, Stephanie</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484239155</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484239155</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484239162/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047608994 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:21:18Z |
institution | BVB |
isbn | 9781484239162 1484239164 1484252411 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Apress |
record_format | marc |
spelling | Paluszek, Michael VerfasserIn aut MATLAB machine learning recipes a problem-solution approach Michael Paluszek and Stephanie Thomas Second edition. New York Apress [2019] ©2019 1 Online-Ressource illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Vendor-supplied metadata Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big data. MATLAB Machine learning Apprentissage automatique COMPUTERS ; General Thomas, Stephanie VerfasserIn aut 9781484239155 Erscheint auch als Druck-Ausgabe 9781484239155 |
spellingShingle | Paluszek, Michael Thomas, Stephanie MATLAB machine learning recipes a problem-solution approach MATLAB Machine learning Apprentissage automatique COMPUTERS ; General |
title | MATLAB machine learning recipes a problem-solution approach |
title_auth | MATLAB machine learning recipes a problem-solution approach |
title_exact_search | MATLAB machine learning recipes a problem-solution approach |
title_full | MATLAB machine learning recipes a problem-solution approach Michael Paluszek and Stephanie Thomas |
title_fullStr | MATLAB machine learning recipes a problem-solution approach Michael Paluszek and Stephanie Thomas |
title_full_unstemmed | MATLAB machine learning recipes a problem-solution approach Michael Paluszek and Stephanie Thomas |
title_short | MATLAB machine learning recipes |
title_sort | matlab machine learning recipes a problem solution approach |
title_sub | a problem-solution approach |
topic | MATLAB Machine learning Apprentissage automatique COMPUTERS ; General |
topic_facet | MATLAB Machine learning Apprentissage automatique COMPUTERS ; General |
work_keys_str_mv | AT paluszekmichael matlabmachinelearningrecipesaproblemsolutionapproach AT thomasstephanie matlabmachinelearningrecipesaproblemsolutionapproach |