Deep learning with Azure: building and deploying artificial intelligence solutions on the Microsoft AI platform
Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware...
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
New York
Apress
2018
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484236796/?ar |
Zusammenfassung: | Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI?Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll LearnBecome familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AIUse pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more)Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolvingDiscover the options for training and operationalizing deep learning models on Azure Who This Book Is ForProfessional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful. |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed August 29, 2018) |
Umfang: | 1 Online-Ressource |
ISBN: | 9781484236796 1484236793 1484236807 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047608307 | ||
003 | DE-627-1 | ||
005 | 20240228120541.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2018 xx |||||o 00| ||eng c | ||
020 | |a 9781484236796 |c electronic bk. |9 978-1-4842-3679-6 | ||
020 | |a 1484236793 |c electronic bk. |9 1-4842-3679-3 | ||
020 | |a 1484236807 |9 1-4842-3680-7 | ||
035 | |a (DE-627-1)047608307 | ||
035 | |a (DE-599)KEP047608307 | ||
035 | |a (ORHE)9781484236796 | ||
035 | |a (DE-627-1)047608307 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a UMP |2 bicssc | |
082 | 0 | |a 004.67/82 |2 23 | |
100 | 1 | |a Salvaris, Mathew |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Deep learning with Azure |b building and deploying artificial intelligence solutions on the Microsoft AI platform |c Mathew Salvaris, Danielle Dean, Wee Hyong Tok |
264 | 1 | |a New York |b Apress |c 2018 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed August 29, 2018) | ||
520 | |a Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI?Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll LearnBecome familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AIUse pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more)Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolvingDiscover the options for training and operationalizing deep learning models on Azure Who This Book Is ForProfessional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful. | ||
650 | 0 | |a Microsoft Azure (Computing platform) | |
650 | 4 | |a Microsoft Azure (Plateforme informatique) | |
650 | 4 | |a Program concepts ; learning to program | |
650 | 4 | |a Microsoft programming | |
650 | 4 | |a COMPUTERS ; Computer Literacy | |
650 | 4 | |a COMPUTERS ; Computer Science | |
650 | 4 | |a COMPUTERS ; Data Processing | |
650 | 4 | |a COMPUTERS ; Hardware ; General | |
650 | 4 | |a COMPUTERS ; Information Technology | |
650 | 4 | |a COMPUTERS ; Machine Theory | |
650 | 4 | |a COMPUTERS ; Reference | |
650 | 4 | |a Microsoft Azure (Computing platform) | |
700 | 1 | |a Dean, Danielle |e VerfasserIn |4 aut | |
700 | 1 | |a Tok, Wee-Hyong |e VerfasserIn |4 aut | |
776 | 1 | |z 1484236785 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1484236785 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484236796/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047608307 |
---|---|
_version_ | 1821494873419677696 |
adam_text | |
any_adam_object | |
author | Salvaris, Mathew Dean, Danielle Tok, Wee-Hyong |
author_facet | Salvaris, Mathew Dean, Danielle Tok, Wee-Hyong |
author_role | aut aut aut |
author_sort | Salvaris, Mathew |
author_variant | m s ms d d dd w h t wht |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047608307 (DE-599)KEP047608307 (ORHE)9781484236796 |
dewey-full | 004.67/82 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.67/82 |
dewey-search | 004.67/82 |
dewey-sort | 14.67 282 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03963cam a22006492 4500</leader><controlfield tag="001">ZDB-30-ORH-047608307</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120541.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484236796</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-3679-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484236793</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-3679-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484236807</subfield><subfield code="9">1-4842-3680-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047608307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047608307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484236796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047608307</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UMP</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.67/82</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Salvaris, Mathew</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning with Azure</subfield><subfield code="b">building and deploying artificial intelligence solutions on the Microsoft AI platform</subfield><subfield code="c">Mathew Salvaris, Danielle Dean, Wee Hyong Tok</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Apress</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed August 29, 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI?Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll LearnBecome familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AIUse pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more)Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolvingDiscover the options for training and operationalizing deep learning models on Azure Who This Book Is ForProfessional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Microsoft Azure (Computing platform)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft Azure (Plateforme informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Program concepts ; learning to program</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Computer Literacy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Data Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Hardware ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Information Technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Machine Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Reference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft Azure (Computing platform)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dean, Danielle</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tok, Wee-Hyong</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1484236785</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1484236785</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484236796/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047608307 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:21:18Z |
institution | BVB |
isbn | 9781484236796 1484236793 1484236807 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Apress |
record_format | marc |
spelling | Salvaris, Mathew VerfasserIn aut Deep learning with Azure building and deploying artificial intelligence solutions on the Microsoft AI platform Mathew Salvaris, Danielle Dean, Wee Hyong Tok New York Apress 2018 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed August 29, 2018) Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI?Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll LearnBecome familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AIUse pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more)Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolvingDiscover the options for training and operationalizing deep learning models on Azure Who This Book Is ForProfessional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful. Microsoft Azure (Computing platform) Microsoft Azure (Plateforme informatique) Program concepts ; learning to program Microsoft programming COMPUTERS ; Computer Literacy COMPUTERS ; Computer Science COMPUTERS ; Data Processing COMPUTERS ; Hardware ; General COMPUTERS ; Information Technology COMPUTERS ; Machine Theory COMPUTERS ; Reference Dean, Danielle VerfasserIn aut Tok, Wee-Hyong VerfasserIn aut 1484236785 Erscheint auch als Druck-Ausgabe 1484236785 |
spellingShingle | Salvaris, Mathew Dean, Danielle Tok, Wee-Hyong Deep learning with Azure building and deploying artificial intelligence solutions on the Microsoft AI platform Microsoft Azure (Computing platform) Microsoft Azure (Plateforme informatique) Program concepts ; learning to program Microsoft programming COMPUTERS ; Computer Literacy COMPUTERS ; Computer Science COMPUTERS ; Data Processing COMPUTERS ; Hardware ; General COMPUTERS ; Information Technology COMPUTERS ; Machine Theory COMPUTERS ; Reference |
title | Deep learning with Azure building and deploying artificial intelligence solutions on the Microsoft AI platform |
title_auth | Deep learning with Azure building and deploying artificial intelligence solutions on the Microsoft AI platform |
title_exact_search | Deep learning with Azure building and deploying artificial intelligence solutions on the Microsoft AI platform |
title_full | Deep learning with Azure building and deploying artificial intelligence solutions on the Microsoft AI platform Mathew Salvaris, Danielle Dean, Wee Hyong Tok |
title_fullStr | Deep learning with Azure building and deploying artificial intelligence solutions on the Microsoft AI platform Mathew Salvaris, Danielle Dean, Wee Hyong Tok |
title_full_unstemmed | Deep learning with Azure building and deploying artificial intelligence solutions on the Microsoft AI platform Mathew Salvaris, Danielle Dean, Wee Hyong Tok |
title_short | Deep learning with Azure |
title_sort | deep learning with azure building and deploying artificial intelligence solutions on the microsoft ai platform |
title_sub | building and deploying artificial intelligence solutions on the Microsoft AI platform |
topic | Microsoft Azure (Computing platform) Microsoft Azure (Plateforme informatique) Program concepts ; learning to program Microsoft programming COMPUTERS ; Computer Literacy COMPUTERS ; Computer Science COMPUTERS ; Data Processing COMPUTERS ; Hardware ; General COMPUTERS ; Information Technology COMPUTERS ; Machine Theory COMPUTERS ; Reference |
topic_facet | Microsoft Azure (Computing platform) Microsoft Azure (Plateforme informatique) Program concepts ; learning to program Microsoft programming COMPUTERS ; Computer Literacy COMPUTERS ; Computer Science COMPUTERS ; Data Processing COMPUTERS ; Hardware ; General COMPUTERS ; Information Technology COMPUTERS ; Machine Theory COMPUTERS ; Reference |
work_keys_str_mv | AT salvarismathew deeplearningwithazurebuildinganddeployingartificialintelligencesolutionsonthemicrosoftaiplatform AT deandanielle deeplearningwithazurebuildinganddeployingartificialintelligencesolutionsonthemicrosoftaiplatform AT tokweehyong deeplearningwithazurebuildinganddeployingartificialintelligencesolutionsonthemicrosoftaiplatform |