Reinforcement learning: with Open AI, TensorFlow and Keras using Python
Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You'll then work with theories related to reinforcement learning and see the concepts that bui...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Berkeley, CA]
Apress
[2018]
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484232859/?ar |
Zusammenfassung: | Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You'll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process. Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov's Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI before looking at Open AI Gym. You'll then learn about Swarm Intelligence with Python in terms of reinforcement learning. The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There's also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google's Deep Mind and see scenarios where reinforcement learning can be used. You will: Absorb the core concepts of the reinforcement learning process Use advanced topics of deep learning and AI Work with Open AI Gym, Open AI, and Python Harness reinforcement learning with TensorFlow and Keras using Python. |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed December 20, 2017) |
Umfang: | 1 Online-Ressource |
ISBN: | 9781484232859 1484232852 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047607157 | ||
003 | DE-627-1 | ||
005 | 20240228120401.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2018 xx |||||o 00| ||eng c | ||
020 | |a 9781484232859 |c electronic bk. |9 978-1-4842-3285-9 | ||
020 | |a 1484232852 |c electronic bk. |9 1-4842-3285-2 | ||
035 | |a (DE-627-1)047607157 | ||
035 | |a (DE-599)KEP047607157 | ||
035 | |a (ORHE)9781484232859 | ||
035 | |a (DE-627-1)047607157 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a UMA |2 bicssc | |
082 | 0 | |a 006.3/1 |2 23 | |
100 | 1 | |a Nandy, Abhishek |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Reinforcement learning |b with Open AI, TensorFlow and Keras using Python |c Abhishek Nandy, Manisha Biswas |
264 | 1 | |a [Berkeley, CA] |b Apress |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed December 20, 2017) | ||
520 | |a Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You'll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process. Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov's Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI before looking at Open AI Gym. You'll then learn about Swarm Intelligence with Python in terms of reinforcement learning. The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There's also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google's Deep Mind and see scenarios where reinforcement learning can be used. You will: Absorb the core concepts of the reinforcement learning process Use advanced topics of deep learning and AI Work with Open AI Gym, Open AI, and Python Harness reinforcement learning with TensorFlow and Keras using Python. | ||
650 | 0 | |a Reinforcement learning | |
650 | 4 | |a Apprentissage par renforcement (Intelligence artificielle) | |
650 | 4 | |a Programming & scripting languages: general | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a COMPUTERS ; General | |
650 | 4 | |a Reinforcement learning | |
700 | 1 | |a Biswas, Manisha |e VerfasserIn |4 aut | |
776 | 1 | |z 1484232844 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1484232844 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484232859/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047607157 |
---|---|
_version_ | 1821494873641975808 |
adam_text | |
any_adam_object | |
author | Nandy, Abhishek Biswas, Manisha |
author_facet | Nandy, Abhishek Biswas, Manisha |
author_role | aut aut |
author_sort | Nandy, Abhishek |
author_variant | a n an m b mb |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047607157 (DE-599)KEP047607157 (ORHE)9781484232859 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03029cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-047607157</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120401.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484232859</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-3285-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484232852</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-3285-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047607157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047607157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484232859</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047607157</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UMA</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nandy, Abhishek</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reinforcement learning</subfield><subfield code="b">with Open AI, TensorFlow and Keras using Python</subfield><subfield code="c">Abhishek Nandy, Manisha Biswas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Berkeley, CA]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed December 20, 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You'll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process. Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov's Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI before looking at Open AI Gym. You'll then learn about Swarm Intelligence with Python in terms of reinforcement learning. The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There's also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google's Deep Mind and see scenarios where reinforcement learning can be used. You will: Absorb the core concepts of the reinforcement learning process Use advanced topics of deep learning and AI Work with Open AI Gym, Open AI, and Python Harness reinforcement learning with TensorFlow and Keras using Python.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage par renforcement (Intelligence artificielle)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming & scripting languages: general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biswas, Manisha</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1484232844</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1484232844</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484232859/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047607157 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:21:18Z |
institution | BVB |
isbn | 9781484232859 1484232852 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Apress |
record_format | marc |
spelling | Nandy, Abhishek VerfasserIn aut Reinforcement learning with Open AI, TensorFlow and Keras using Python Abhishek Nandy, Manisha Biswas [Berkeley, CA] Apress [2018] ©2018 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed December 20, 2017) Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You'll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process. Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov's Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI before looking at Open AI Gym. You'll then learn about Swarm Intelligence with Python in terms of reinforcement learning. The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There's also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google's Deep Mind and see scenarios where reinforcement learning can be used. You will: Absorb the core concepts of the reinforcement learning process Use advanced topics of deep learning and AI Work with Open AI Gym, Open AI, and Python Harness reinforcement learning with TensorFlow and Keras using Python. Reinforcement learning Apprentissage par renforcement (Intelligence artificielle) Programming & scripting languages: general Artificial intelligence COMPUTERS ; General Biswas, Manisha VerfasserIn aut 1484232844 Erscheint auch als Druck-Ausgabe 1484232844 |
spellingShingle | Nandy, Abhishek Biswas, Manisha Reinforcement learning with Open AI, TensorFlow and Keras using Python Reinforcement learning Apprentissage par renforcement (Intelligence artificielle) Programming & scripting languages: general Artificial intelligence COMPUTERS ; General |
title | Reinforcement learning with Open AI, TensorFlow and Keras using Python |
title_auth | Reinforcement learning with Open AI, TensorFlow and Keras using Python |
title_exact_search | Reinforcement learning with Open AI, TensorFlow and Keras using Python |
title_full | Reinforcement learning with Open AI, TensorFlow and Keras using Python Abhishek Nandy, Manisha Biswas |
title_fullStr | Reinforcement learning with Open AI, TensorFlow and Keras using Python Abhishek Nandy, Manisha Biswas |
title_full_unstemmed | Reinforcement learning with Open AI, TensorFlow and Keras using Python Abhishek Nandy, Manisha Biswas |
title_short | Reinforcement learning |
title_sort | reinforcement learning with open ai tensorflow and keras using python |
title_sub | with Open AI, TensorFlow and Keras using Python |
topic | Reinforcement learning Apprentissage par renforcement (Intelligence artificielle) Programming & scripting languages: general Artificial intelligence COMPUTERS ; General |
topic_facet | Reinforcement learning Apprentissage par renforcement (Intelligence artificielle) Programming & scripting languages: general Artificial intelligence COMPUTERS ; General |
work_keys_str_mv | AT nandyabhishek reinforcementlearningwithopenaitensorflowandkerasusingpython AT biswasmanisha reinforcementlearningwithopenaitensorflowandkerasusingpython |