Predictive analytics with Microsoft Azure Machine Learning: build and deploy actionable solutions in minutes
Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Busi...
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[New York, New York]
Apress
2014
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484204450/?ar |
Zusammenfassung: | Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft. |
Beschreibung: | Includes bibliographical references and index. - Vendor-supplied metadata |
Umfang: | 1 Online-Ressource |
ISBN: | 9781484204450 148420445X |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047600926 | ||
003 | DE-627-1 | ||
005 | 20240228115716.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2014 xx |||||o 00| ||eng c | ||
020 | |a 9781484204450 |c electronic bk. |9 978-1-4842-0445-0 | ||
020 | |a 148420445X |c electronic bk. |9 1-4842-0445-X | ||
035 | |a (DE-627-1)047600926 | ||
035 | |a (DE-599)KEP047600926 | ||
035 | |a (ORHE)9781484204450 | ||
035 | |a (DE-627-1)047600926 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a UN |2 bicssc | |
072 | 7 | |a UMT |2 bicssc | |
082 | 0 | |a 005.74 |2 23 | |
100 | 1 | |a Barga, Roger |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Predictive analytics with Microsoft Azure Machine Learning |b build and deploy actionable solutions in minutes |c Roger Barga, Valentine Fontama, Wee Hyong Tok |
264 | 1 | |a [New York, New York] |b Apress |c 2014 | |
264 | 4 | |c ©2014 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Vendor-supplied metadata | ||
520 | |a Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft. | ||
630 | 2 | 0 | |a Windows Azure |
650 | 0 | |a Information technology |x Management | |
650 | 0 | |a Database management | |
650 | 0 | |a computerwetenschappen | |
650 | 0 | |a computer sciences | |
650 | 0 | |a databasebeheer | |
650 | 0 | |a database management | |
650 | 0 | |a Information and Communication Technology (General) | |
650 | 0 | |a Informatie- en communicatietechnologie (algemeen) | |
650 | 2 | |a Electronic Data Processing | |
650 | 4 | |a Windows Azure | |
650 | 4 | |a Informatique | |
650 | 4 | |a Bases de données ; Gestion | |
650 | 4 | |a Technologie de l'information ; Gestion | |
650 | 4 | |a COMPUTERS ; Software Development & Engineering ; Project Management | |
650 | 4 | |a Database management | |
650 | 4 | |a Information technology ; Management | |
700 | 1 | |a Fontama, Valentine |e VerfasserIn |4 aut | |
700 | 1 | |a Tok, Wee-Hyong |e VerfasserIn |4 aut | |
776 | 1 | |z 9781484204467 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781484204467 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484204450/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047600926 |
---|---|
_version_ | 1821494874868809728 |
adam_text | |
any_adam_object | |
author | Barga, Roger Fontama, Valentine Tok, Wee-Hyong |
author_facet | Barga, Roger Fontama, Valentine Tok, Wee-Hyong |
author_role | aut aut aut |
author_sort | Barga, Roger |
author_variant | r b rb v f vf w h t wht |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047600926 (DE-599)KEP047600926 (ORHE)9781484204450 |
dewey-full | 005.74 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.74 |
dewey-search | 005.74 |
dewey-sort | 15.74 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03956cam a22006492 4500</leader><controlfield tag="001">ZDB-30-ORH-047600926</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228115716.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484204450</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-0445-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">148420445X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-0445-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047600926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047600926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484204450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047600926</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UN</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UMT</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barga, Roger</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictive analytics with Microsoft Azure Machine Learning</subfield><subfield code="b">build and deploy actionable solutions in minutes</subfield><subfield code="c">Roger Barga, Valentine Fontama, Wee Hyong Tok</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New York, New York]</subfield><subfield code="b">Apress</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Vendor-supplied metadata</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">Windows Azure</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information technology</subfield><subfield code="x">Management</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">computerwetenschappen</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">computer sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">databasebeheer</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">database management</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information and Communication Technology (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Informatie- en communicatietechnologie (algemeen)</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Electronic Data Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Windows Azure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bases de données ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technologie de l'information ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Software Development & Engineering ; Project Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information technology ; Management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fontama, Valentine</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tok, Wee-Hyong</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484204467</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484204467</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484204450/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047600926 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:21:19Z |
institution | BVB |
isbn | 9781484204450 148420445X |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Apress |
record_format | marc |
spelling | Barga, Roger VerfasserIn aut Predictive analytics with Microsoft Azure Machine Learning build and deploy actionable solutions in minutes Roger Barga, Valentine Fontama, Wee Hyong Tok [New York, New York] Apress 2014 ©2014 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Vendor-supplied metadata Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft. Windows Azure Information technology Management Database management computerwetenschappen computer sciences databasebeheer database management Information and Communication Technology (General) Informatie- en communicatietechnologie (algemeen) Electronic Data Processing Informatique Bases de données ; Gestion Technologie de l'information ; Gestion COMPUTERS ; Software Development & Engineering ; Project Management Information technology ; Management Fontama, Valentine VerfasserIn aut Tok, Wee-Hyong VerfasserIn aut 9781484204467 Erscheint auch als Druck-Ausgabe 9781484204467 |
spellingShingle | Barga, Roger Fontama, Valentine Tok, Wee-Hyong Predictive analytics with Microsoft Azure Machine Learning build and deploy actionable solutions in minutes Windows Azure Information technology Management Database management computerwetenschappen computer sciences databasebeheer database management Information and Communication Technology (General) Informatie- en communicatietechnologie (algemeen) Electronic Data Processing Informatique Bases de données ; Gestion Technologie de l'information ; Gestion COMPUTERS ; Software Development & Engineering ; Project Management Information technology ; Management |
title | Predictive analytics with Microsoft Azure Machine Learning build and deploy actionable solutions in minutes |
title_auth | Predictive analytics with Microsoft Azure Machine Learning build and deploy actionable solutions in minutes |
title_exact_search | Predictive analytics with Microsoft Azure Machine Learning build and deploy actionable solutions in minutes |
title_full | Predictive analytics with Microsoft Azure Machine Learning build and deploy actionable solutions in minutes Roger Barga, Valentine Fontama, Wee Hyong Tok |
title_fullStr | Predictive analytics with Microsoft Azure Machine Learning build and deploy actionable solutions in minutes Roger Barga, Valentine Fontama, Wee Hyong Tok |
title_full_unstemmed | Predictive analytics with Microsoft Azure Machine Learning build and deploy actionable solutions in minutes Roger Barga, Valentine Fontama, Wee Hyong Tok |
title_short | Predictive analytics with Microsoft Azure Machine Learning |
title_sort | predictive analytics with microsoft azure machine learning build and deploy actionable solutions in minutes |
title_sub | build and deploy actionable solutions in minutes |
topic | Windows Azure Information technology Management Database management computerwetenschappen computer sciences databasebeheer database management Information and Communication Technology (General) Informatie- en communicatietechnologie (algemeen) Electronic Data Processing Informatique Bases de données ; Gestion Technologie de l'information ; Gestion COMPUTERS ; Software Development & Engineering ; Project Management Information technology ; Management |
topic_facet | Windows Azure Information technology Management Database management computerwetenschappen computer sciences databasebeheer database management Information and Communication Technology (General) Informatie- en communicatietechnologie (algemeen) Electronic Data Processing Informatique Bases de données ; Gestion Technologie de l'information ; Gestion COMPUTERS ; Software Development & Engineering ; Project Management Information technology ; Management |
work_keys_str_mv | AT bargaroger predictiveanalyticswithmicrosoftazuremachinelearningbuildanddeployactionablesolutionsinminutes AT fontamavalentine predictiveanalyticswithmicrosoftazuremachinelearningbuildanddeployactionablesolutionsinminutes AT tokweehyong predictiveanalyticswithmicrosoftazuremachinelearningbuildanddeployactionablesolutionsinminutes |