Data mining: practical machine learning tools and techniques
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaime...
Gespeichert in:
Beteiligte Personen: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge, MA, United States
Morgan Kaufmann
[2017]
|
Ausgabe: | Fourth edition |
Schriftenreihe: | Morgan Kaufmann Series in Data Management Systems
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9780128043578/?ar |
Zusammenfassung: | Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html. |
Beschreibung: | Includes bibliographical references (pages 573-600) and index. - Online resource; title from PDF title page (ProQuest Ebook Central, viewed 02 March 2022) |
Umfang: | 1 Online-Ressource (xxxii, 621 Seiten) illustrations |
ISBN: | 9780128043578 0128043571 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047408065 | ||
003 | DE-627-1 | ||
005 | 20240228120152.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2017 xx |||||o 00| ||eng c | ||
020 | |a 9780128043578 |c electronic book |9 978-0-12-804357-8 | ||
020 | |a 0128043571 |c electronic book |9 0-12-804357-1 | ||
035 | |a (DE-627-1)047408065 | ||
035 | |a (DE-599)KEP047408065 | ||
035 | |a (ORHE)9780128043578 | ||
035 | |a (DE-627-1)047408065 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a UG |2 bicssc | |
072 | 7 | |a UNF |2 bicssc | |
072 | 7 | |a UYQM |2 bicssc | |
072 | 7 | |a GLC |2 bicssc | |
072 | 7 | |a UB |2 bicssc | |
072 | 7 | |a UN |2 bicssc | |
082 | 0 | |a 006.3/12 |2 23 | |
100 | 1 | |a Witten, I. H. |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Data mining |b practical machine learning tools and techniques |c Ian H. Witten, University of Waikato, Hamilton, New Zealand ; Eibe Frank, University of Waikato, Hamilton, New Zealand ; Mark A. Hall, University of Waikato, Hamilton, New Zealand ; Christopher J. Pal, Polytechnique Montréal, Montreal, Quebec, Canada |
250 | |a Fourth edition | ||
264 | 1 | |a Cambridge, MA, United States |b Morgan Kaufmann |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 Online-Ressource (xxxii, 621 Seiten) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Morgan Kaufmann Series in Data Management Systems | |
500 | |a Includes bibliographical references (pages 573-600) and index. - Online resource; title from PDF title page (ProQuest Ebook Central, viewed 02 March 2022) | ||
520 | |a Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html. | ||
650 | 0 | |a Data mining | |
650 | 2 | |a Data Mining | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a COMPUTERS ; General | |
650 | 4 | |a Data mining | |
650 | 4 | |a Graphical & digital media applications | |
650 | 4 | |a Data mining | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Library, archive & information management | |
650 | 4 | |a Information technology: general issues | |
650 | 4 | |a Databases | |
650 | 4 | |a Enterprise software | |
650 | 4 | |a Data capture & analysis | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Business & Management | |
650 | 4 | |a Computers and IT | |
650 | 4 | |a MIT 601 | |
700 | 1 | |a Frank, Eibe |e VerfasserIn |4 aut | |
700 | 1 | |a Hall, Mark A. |e VerfasserIn |4 aut | |
700 | 1 | |a Pal, Christopher J. |e VerfasserIn |4 aut | |
776 | 1 | |z 9780128042915 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128042915 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780128043578/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047408065 |
---|---|
_version_ | 1821494909436166144 |
adam_text | |
any_adam_object | |
author | Witten, I. H. Frank, Eibe Hall, Mark A. Pal, Christopher J. |
author_facet | Witten, I. H. Frank, Eibe Hall, Mark A. Pal, Christopher J. |
author_role | aut aut aut aut |
author_sort | Witten, I. H. |
author_variant | i h w ih ihw e f ef m a h ma mah c j p cj cjp |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047408065 (DE-599)KEP047408065 (ORHE)9780128043578 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Fourth edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03860cam a22007332 4500</leader><controlfield tag="001">ZDB-30-ORH-047408065</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120152.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128043578</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-0-12-804357-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128043571</subfield><subfield code="c">electronic book</subfield><subfield code="9">0-12-804357-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047408065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047408065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780128043578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047408065</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UG</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UNF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQM</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">GLC</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UB</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UN</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Witten, I. H.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining</subfield><subfield code="b">practical machine learning tools and techniques</subfield><subfield code="c">Ian H. Witten, University of Waikato, Hamilton, New Zealand ; Eibe Frank, University of Waikato, Hamilton, New Zealand ; Mark A. Hall, University of Waikato, Hamilton, New Zealand ; Christopher J. Pal, Polytechnique Montréal, Montreal, Quebec, Canada</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA, United States</subfield><subfield code="b">Morgan Kaufmann</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxii, 621 Seiten)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Morgan Kaufmann Series in Data Management Systems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 573-600) and index. - Online resource; title from PDF title page (ProQuest Ebook Central, viewed 02 March 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphical & digital media applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Library, archive & information management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information technology: general issues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Databases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enterprise software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data capture & analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business & Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers and IT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIT 601</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frank, Eibe</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hall, Mark A.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Christopher J.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780128042915</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128042915</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780128043578/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047408065 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:21:52Z |
institution | BVB |
isbn | 9780128043578 0128043571 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxxii, 621 Seiten) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Morgan Kaufmann |
record_format | marc |
series2 | Morgan Kaufmann Series in Data Management Systems |
spelling | Witten, I. H. VerfasserIn aut Data mining practical machine learning tools and techniques Ian H. Witten, University of Waikato, Hamilton, New Zealand ; Eibe Frank, University of Waikato, Hamilton, New Zealand ; Mark A. Hall, University of Waikato, Hamilton, New Zealand ; Christopher J. Pal, Polytechnique Montréal, Montreal, Quebec, Canada Fourth edition Cambridge, MA, United States Morgan Kaufmann [2017] ©2017 1 Online-Ressource (xxxii, 621 Seiten) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Morgan Kaufmann Series in Data Management Systems Includes bibliographical references (pages 573-600) and index. - Online resource; title from PDF title page (ProQuest Ebook Central, viewed 02 March 2022) Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html. Data mining Data Mining Exploration de données (Informatique) COMPUTERS ; General Graphical & digital media applications Machine learning Library, archive & information management Information technology: general issues Databases Enterprise software Data capture & analysis Artificial intelligence Business & Management Computers and IT MIT 601 Frank, Eibe VerfasserIn aut Hall, Mark A. VerfasserIn aut Pal, Christopher J. VerfasserIn aut 9780128042915 Erscheint auch als Druck-Ausgabe 9780128042915 |
spellingShingle | Witten, I. H. Frank, Eibe Hall, Mark A. Pal, Christopher J. Data mining practical machine learning tools and techniques Data mining Data Mining Exploration de données (Informatique) COMPUTERS ; General Graphical & digital media applications Machine learning Library, archive & information management Information technology: general issues Databases Enterprise software Data capture & analysis Artificial intelligence Business & Management Computers and IT MIT 601 |
title | Data mining practical machine learning tools and techniques |
title_auth | Data mining practical machine learning tools and techniques |
title_exact_search | Data mining practical machine learning tools and techniques |
title_full | Data mining practical machine learning tools and techniques Ian H. Witten, University of Waikato, Hamilton, New Zealand ; Eibe Frank, University of Waikato, Hamilton, New Zealand ; Mark A. Hall, University of Waikato, Hamilton, New Zealand ; Christopher J. Pal, Polytechnique Montréal, Montreal, Quebec, Canada |
title_fullStr | Data mining practical machine learning tools and techniques Ian H. Witten, University of Waikato, Hamilton, New Zealand ; Eibe Frank, University of Waikato, Hamilton, New Zealand ; Mark A. Hall, University of Waikato, Hamilton, New Zealand ; Christopher J. Pal, Polytechnique Montréal, Montreal, Quebec, Canada |
title_full_unstemmed | Data mining practical machine learning tools and techniques Ian H. Witten, University of Waikato, Hamilton, New Zealand ; Eibe Frank, University of Waikato, Hamilton, New Zealand ; Mark A. Hall, University of Waikato, Hamilton, New Zealand ; Christopher J. Pal, Polytechnique Montréal, Montreal, Quebec, Canada |
title_short | Data mining |
title_sort | data mining practical machine learning tools and techniques |
title_sub | practical machine learning tools and techniques |
topic | Data mining Data Mining Exploration de données (Informatique) COMPUTERS ; General Graphical & digital media applications Machine learning Library, archive & information management Information technology: general issues Databases Enterprise software Data capture & analysis Artificial intelligence Business & Management Computers and IT MIT 601 |
topic_facet | Data mining Data Mining Exploration de données (Informatique) COMPUTERS ; General Graphical & digital media applications Machine learning Library, archive & information management Information technology: general issues Databases Enterprise software Data capture & analysis Artificial intelligence Business & Management Computers and IT MIT 601 |
work_keys_str_mv | AT wittenih dataminingpracticalmachinelearningtoolsandtechniques AT frankeibe dataminingpracticalmachinelearningtoolsandtechniques AT hallmarka dataminingpracticalmachinelearningtoolsandtechniques AT palchristopherj dataminingpracticalmachinelearningtoolsandtechniques |