Hidden Semi-Markov models: theory, algorithms and applications
Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation d...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Amsterdam, Netherlands
Elsevier
2016
|
Schriftenreihe: | Computer science reviews and trends
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9780128027714/?ar |
Zusammenfassung: | Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science. |
Beschreibung: | Includes bibliographical references. - Online resource; title from PDF title page (EBSCO, viewed October 29, 2015) |
Umfang: | 1 Online-Ressource illustrations. |
ISBN: | 9780128027714 0128027711 0128027673 9780128027677 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047407271 | ||
003 | DE-627-1 | ||
005 | 20240228115949.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2016 xx |||||o 00| ||eng c | ||
020 | |a 9780128027714 |c electronic bk. |9 978-0-12-802771-4 | ||
020 | |a 0128027711 |c electronic bk. |9 0-12-802771-1 | ||
020 | |a 0128027673 |9 0-12-802767-3 | ||
020 | |a 9780128027677 |9 978-0-12-802767-7 | ||
035 | |a (DE-627-1)047407271 | ||
035 | |a (DE-599)KEP047407271 | ||
035 | |a (ORHE)9780128027714 | ||
035 | |a (DE-627-1)047407271 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a MAT |2 bisacsh | |
072 | 7 | |a MAT |2 bisacsh | |
082 | 0 | |a 519.2/33 |2 23 | |
100 | 1 | |a Yu, Shun-Zheng |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Hidden Semi-Markov models |b theory, algorithms and applications |c Shun-Zheng Yu |
264 | 1 | |a Amsterdam, Netherlands |b Elsevier |c 2016 | |
264 | 4 | |c ©2016 | |
300 | |a 1 Online-Ressource |b illustrations. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Computer science reviews and trends | |
500 | |a Includes bibliographical references. - Online resource; title from PDF title page (EBSCO, viewed October 29, 2015) | ||
520 | |a Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science. | ||
650 | 0 | |a Markov processes | |
650 | 0 | |a Renewal theory | |
650 | 4 | |a Processus de Markov | |
650 | 4 | |a Théorie du renouvellement | |
650 | 4 | |a MATHEMATICS ; Applied | |
650 | 4 | |a MATHEMATICS ; Probability & Statistics ; General | |
650 | 4 | |a Markov processes | |
650 | 4 | |a Renewal theory | |
776 | 1 | |z 9780128027677 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128027677 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780128027714/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047407271 |
---|---|
_version_ | 1821494909574578176 |
adam_text | |
any_adam_object | |
author | Yu, Shun-Zheng |
author_facet | Yu, Shun-Zheng |
author_role | aut |
author_sort | Yu, Shun-Zheng |
author_variant | s z y szy |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047407271 (DE-599)KEP047407271 (ORHE)9780128027714 |
dewey-full | 519.2/33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/33 |
dewey-search | 519.2/33 |
dewey-sort | 3519.2 233 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02818cam a22005412 4500</leader><controlfield tag="001">ZDB-30-ORH-047407271</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228115949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128027714</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-12-802771-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128027711</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-12-802771-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128027673</subfield><subfield code="9">0-12-802767-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128027677</subfield><subfield code="9">978-0-12-802767-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047407271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047407271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780128027714</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047407271</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/33</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Shun-Zheng</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hidden Semi-Markov models</subfield><subfield code="b">theory, algorithms and applications</subfield><subfield code="c">Shun-Zheng Yu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2016</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computer science reviews and trends</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references. - Online resource; title from PDF title page (EBSCO, viewed October 29, 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Renewal theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus de Markov</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie du renouvellement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Applied</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Probability & Statistics ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewal theory</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780128027677</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128027677</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780128027714/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047407271 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:21:52Z |
institution | BVB |
isbn | 9780128027714 0128027711 0128027673 9780128027677 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource illustrations. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Elsevier |
record_format | marc |
series2 | Computer science reviews and trends |
spelling | Yu, Shun-Zheng VerfasserIn aut Hidden Semi-Markov models theory, algorithms and applications Shun-Zheng Yu Amsterdam, Netherlands Elsevier 2016 ©2016 1 Online-Ressource illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computer science reviews and trends Includes bibliographical references. - Online resource; title from PDF title page (EBSCO, viewed October 29, 2015) Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science. Markov processes Renewal theory Processus de Markov Théorie du renouvellement MATHEMATICS ; Applied MATHEMATICS ; Probability & Statistics ; General 9780128027677 Erscheint auch als Druck-Ausgabe 9780128027677 |
spellingShingle | Yu, Shun-Zheng Hidden Semi-Markov models theory, algorithms and applications Markov processes Renewal theory Processus de Markov Théorie du renouvellement MATHEMATICS ; Applied MATHEMATICS ; Probability & Statistics ; General |
title | Hidden Semi-Markov models theory, algorithms and applications |
title_auth | Hidden Semi-Markov models theory, algorithms and applications |
title_exact_search | Hidden Semi-Markov models theory, algorithms and applications |
title_full | Hidden Semi-Markov models theory, algorithms and applications Shun-Zheng Yu |
title_fullStr | Hidden Semi-Markov models theory, algorithms and applications Shun-Zheng Yu |
title_full_unstemmed | Hidden Semi-Markov models theory, algorithms and applications Shun-Zheng Yu |
title_short | Hidden Semi-Markov models |
title_sort | hidden semi markov models theory algorithms and applications |
title_sub | theory, algorithms and applications |
topic | Markov processes Renewal theory Processus de Markov Théorie du renouvellement MATHEMATICS ; Applied MATHEMATICS ; Probability & Statistics ; General |
topic_facet | Markov processes Renewal theory Processus de Markov Théorie du renouvellement MATHEMATICS ; Applied MATHEMATICS ; Probability & Statistics ; General |
work_keys_str_mv | AT yushunzheng hiddensemimarkovmodelstheoryalgorithmsandapplications |