Bayesian astrophysics:
Bayesian methods are being increasingly employed in many different areas of research in the physical sciences. In astrophysics, models are used to make predictions to be compared to observations. These observations offer information that is incomplete and uncertain, so the comparison has to be pursu...
Gespeichert in:
Körperschaft: | |
---|---|
Weitere beteiligte Personen: | , |
Format: | Tagungsbericht E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2018
|
Schriftenreihe: | Canary Islands Winter School of Astrophysics
volume XXVI |
Links: | https://doi.org/10.1017/9781316182406 |
Zusammenfassung: | Bayesian methods are being increasingly employed in many different areas of research in the physical sciences. In astrophysics, models are used to make predictions to be compared to observations. These observations offer information that is incomplete and uncertain, so the comparison has to be pursued by following a probabilistic approach. With contributions from leading experts, this volume covers the foundations of Bayesian inference, a description of computational methods, and recent results from their application to areas such as exoplanet detection and characterisation, image reconstruction, and cosmology. It appeals to both young researchers seeking to learn about Bayesian methods as well as to astronomers wishing to incorporate these approaches in their research areas. It provides the next generation of researchers with the tools of modern data analysis that are already becoming standard in current astrophysical research. |
Umfang: | 1 Online-Ressource (xiii, 194 Seiten) |
ISBN: | 9781316182406 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781316182406 | ||
003 | UkCbUP | ||
005 | 20200325083458.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 140915s2018||||enk o ||1 0|eng|d | ||
020 | |a 9781316182406 | ||
111 | 2 | |a Canary Islands Winter School of Astrophysics |n (26th : |d 2014 : |c La Laguna, Canary Islands) | |
245 | 1 | 0 | |a Bayesian astrophysics |c edited by Andrés Asensio Ramos, Instituto de Astrofísica de Canarias, Tenerife and Iñigo Arregui, Instituto de Astrofísica de Canarias, Tenerife |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2018 | |
300 | |a 1 Online-Ressource (xiii, 194 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Canary Islands Winter School of Astrophysics |v volume XXVI | |
520 | |a Bayesian methods are being increasingly employed in many different areas of research in the physical sciences. In astrophysics, models are used to make predictions to be compared to observations. These observations offer information that is incomplete and uncertain, so the comparison has to be pursued by following a probabilistic approach. With contributions from leading experts, this volume covers the foundations of Bayesian inference, a description of computational methods, and recent results from their application to areas such as exoplanet detection and characterisation, image reconstruction, and cosmology. It appeals to both young researchers seeking to learn about Bayesian methods as well as to astronomers wishing to incorporate these approaches in their research areas. It provides the next generation of researchers with the tools of modern data analysis that are already becoming standard in current astrophysical research. | ||
700 | 1 | |a Arregui, Íñigo | |
700 | 1 | |a Asensio Ramos, Andrés | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107102132 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107499584 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781316182406 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781316182406 |
---|---|
_version_ | 1825574054146342912 |
adam_text | |
any_adam_object | |
author2 | Arregui, Íñigo Asensio Ramos, Andrés |
author2_role | |
author2_variant | i a ia r a a ra raa |
author_corporate | Canary Islands Winter School of Astrophysics La Laguna, Canary Islands |
author_corporate_role | |
author_facet | Arregui, Íñigo Asensio Ramos, Andrés Canary Islands Winter School of Astrophysics La Laguna, Canary Islands |
author_sort | Canary Islands Winter School of Astrophysics La Laguna, Canary Islands |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02031nam a2200289 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781316182406</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20200325083458.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">140915s2018||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316182406</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">Canary Islands Winter School of Astrophysics</subfield><subfield code="n">(26th :</subfield><subfield code="d">2014 :</subfield><subfield code="c">La Laguna, Canary Islands)</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian astrophysics</subfield><subfield code="c">edited by Andrés Asensio Ramos, Instituto de Astrofísica de Canarias, Tenerife and Iñigo Arregui, Instituto de Astrofísica de Canarias, Tenerife</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 194 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Canary Islands Winter School of Astrophysics</subfield><subfield code="v">volume XXVI</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bayesian methods are being increasingly employed in many different areas of research in the physical sciences. In astrophysics, models are used to make predictions to be compared to observations. These observations offer information that is incomplete and uncertain, so the comparison has to be pursued by following a probabilistic approach. With contributions from leading experts, this volume covers the foundations of Bayesian inference, a description of computational methods, and recent results from their application to areas such as exoplanet detection and characterisation, image reconstruction, and cosmology. It appeals to both young researchers seeking to learn about Bayesian methods as well as to astronomers wishing to incorporate these approaches in their research areas. It provides the next generation of researchers with the tools of modern data analysis that are already becoming standard in current astrophysical research.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arregui, Íñigo</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asensio Ramos, Andrés</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107102132</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107499584</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781316182406</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781316182406 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:08Z |
institution | BVB |
isbn | 9781316182406 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiii, 194 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Canary Islands Winter School of Astrophysics |
spelling | Canary Islands Winter School of Astrophysics (26th : 2014 : La Laguna, Canary Islands) Bayesian astrophysics edited by Andrés Asensio Ramos, Instituto de Astrofísica de Canarias, Tenerife and Iñigo Arregui, Instituto de Astrofísica de Canarias, Tenerife Cambridge Cambridge University Press 2018 1 Online-Ressource (xiii, 194 Seiten) txt c cr Canary Islands Winter School of Astrophysics volume XXVI Bayesian methods are being increasingly employed in many different areas of research in the physical sciences. In astrophysics, models are used to make predictions to be compared to observations. These observations offer information that is incomplete and uncertain, so the comparison has to be pursued by following a probabilistic approach. With contributions from leading experts, this volume covers the foundations of Bayesian inference, a description of computational methods, and recent results from their application to areas such as exoplanet detection and characterisation, image reconstruction, and cosmology. It appeals to both young researchers seeking to learn about Bayesian methods as well as to astronomers wishing to incorporate these approaches in their research areas. It provides the next generation of researchers with the tools of modern data analysis that are already becoming standard in current astrophysical research. Arregui, Íñigo Asensio Ramos, Andrés Erscheint auch als Druck-Ausgabe 9781107102132 Erscheint auch als Druck-Ausgabe 9781107499584 |
spellingShingle | Bayesian astrophysics |
title | Bayesian astrophysics |
title_auth | Bayesian astrophysics |
title_exact_search | Bayesian astrophysics |
title_full | Bayesian astrophysics edited by Andrés Asensio Ramos, Instituto de Astrofísica de Canarias, Tenerife and Iñigo Arregui, Instituto de Astrofísica de Canarias, Tenerife |
title_fullStr | Bayesian astrophysics edited by Andrés Asensio Ramos, Instituto de Astrofísica de Canarias, Tenerife and Iñigo Arregui, Instituto de Astrofísica de Canarias, Tenerife |
title_full_unstemmed | Bayesian astrophysics edited by Andrés Asensio Ramos, Instituto de Astrofísica de Canarias, Tenerife and Iñigo Arregui, Instituto de Astrofísica de Canarias, Tenerife |
title_short | Bayesian astrophysics |
title_sort | bayesian astrophysics |
work_keys_str_mv | AT canaryislandswinterschoolofastrophysicslalagunacanaryislands bayesianastrophysics AT arreguiinigo bayesianastrophysics AT asensioramosandres bayesianastrophysics |