Transfer learning:

Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such syst...

Full description

Saved in:
Bibliographic Details
Main Author: Yang, Qiang 1961-
Other Authors: Dai, Wenyuan 1983-, Pan, Sinno Jialin 1980-, Zhang, Yu 1982-
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2020
Links:https://doi.org/10.1017/9781139061773
Summary:Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.
Physical Description:1 Online-Ressource (xi, 379 Seiten)
ISBN:9781139061773