An information theoretic approach to econometrics:
This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stoch...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2012
|
Links: | https://doi.org/10.1017/CBO9781139033848 |
Zusammenfassung: | This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family. |
Umfang: | 1 Online-Ressource (xvi, 232 Seiten) |
ISBN: | 9781139033848 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781139033848 | ||
003 | UkCbUP | ||
005 | 20151005020621.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 110225s2012||||enk o ||1 0|eng|d | ||
020 | |a 9781139033848 | ||
100 | 1 | |a Judge, George G. | |
245 | 1 | 3 | |a An information theoretic approach to econometrics |c George G. Judge, Ron C. Mittelhammer |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2012 | |
300 | |a 1 Online-Ressource (xvi, 232 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family. | ||
700 | 1 | |a Mittelhammer, Ron | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521689731 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521869591 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9781139033848 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781139033848 |
---|---|
_version_ | 1827038449569366016 |
adam_text | |
any_adam_object | |
author | Judge, George G. |
author2 | Mittelhammer, Ron |
author2_role | |
author2_variant | r m rm |
author_facet | Judge, George G. Mittelhammer, Ron |
author_role | |
author_sort | Judge, George G. |
author_variant | g g j gg ggj |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01800nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781139033848</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020621.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">110225s2012||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139033848</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Judge, George G.</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An information theoretic approach to econometrics</subfield><subfield code="c">George G. Judge, Ron C. Mittelhammer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 232 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mittelhammer, Ron</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521689731</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521869591</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781139033848</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781139033848 |
illustrated | Not Illustrated |
indexdate | 2025-03-19T15:54:04Z |
institution | BVB |
isbn | 9781139033848 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xvi, 232 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Judge, George G. An information theoretic approach to econometrics George G. Judge, Ron C. Mittelhammer Cambridge Cambridge University Press 2012 1 Online-Ressource (xvi, 232 Seiten) txt c cr This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family. Mittelhammer, Ron Erscheint auch als Druck-Ausgabe 9780521689731 Erscheint auch als Druck-Ausgabe 9780521869591 |
spellingShingle | Judge, George G. An information theoretic approach to econometrics |
title | An information theoretic approach to econometrics |
title_auth | An information theoretic approach to econometrics |
title_exact_search | An information theoretic approach to econometrics |
title_full | An information theoretic approach to econometrics George G. Judge, Ron C. Mittelhammer |
title_fullStr | An information theoretic approach to econometrics George G. Judge, Ron C. Mittelhammer |
title_full_unstemmed | An information theoretic approach to econometrics George G. Judge, Ron C. Mittelhammer |
title_short | An information theoretic approach to econometrics |
title_sort | information theoretic approach to econometrics |
work_keys_str_mv | AT judgegeorgeg aninformationtheoreticapproachtoeconometrics AT mittelhammerron aninformationtheoreticapproachtoeconometrics AT judgegeorgeg informationtheoreticapproachtoeconometrics AT mittelhammerron informationtheoreticapproachtoeconometrics |