Understanding the tripartite approach to Bayesian divergence time estimation:
Placing evolutionary events in the context of geological time is a fundamental goal in paleobiology and macroevolution. In this Element we describe the tripartite model used for Bayesian estimation of time calibrated phylogenetic trees. The model can be readily separated into its component models: t...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge elements. Elements of paleontology
|
Links: | https://doi.org/10.1017/9781108954365 |
Zusammenfassung: | Placing evolutionary events in the context of geological time is a fundamental goal in paleobiology and macroevolution. In this Element we describe the tripartite model used for Bayesian estimation of time calibrated phylogenetic trees. The model can be readily separated into its component models: the substitution model, the clock model and the tree model. We provide an overview of the most widely used models for each component and highlight the advantages of implementing the tripartite model within a Bayesian framework. |
Umfang: | 1 Online-Ressource (39 Seiten) |
ISBN: | 9781108954365 |
ISSN: | 2517-780X |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108954365 | ||
003 | UkCbUP | ||
005 | 20210112001407.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 200623s2020||||enk o ||1 0|eng|d | ||
020 | |a 9781108954365 | ||
100 | 1 | |a Warnock, Rachel C. M. | |
245 | 1 | 0 | |a Understanding the tripartite approach to Bayesian divergence time estimation |c Rachel C.M. Warnock, April M. Wright |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (39 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge elements. Elements of paleontology |x 2517-780X | |
520 | |a Placing evolutionary events in the context of geological time is a fundamental goal in paleobiology and macroevolution. In this Element we describe the tripartite model used for Bayesian estimation of time calibrated phylogenetic trees. The model can be readily separated into its component models: the substitution model, the clock model and the tree model. We provide an overview of the most widely used models for each component and highlight the advantages of implementing the tripartite model within a Bayesian framework. | ||
700 | 1 | |a Wright, April M. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108949422 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108954365 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108954365 |
---|---|
_version_ | 1825574046831476738 |
adam_text | |
any_adam_object | |
author | Warnock, Rachel C. M. |
author2 | Wright, April M. |
author2_role | |
author2_variant | a m w am amw |
author_facet | Warnock, Rachel C. M. Wright, April M. |
author_role | |
author_sort | Warnock, Rachel C. M. |
author_variant | r c m w rcm rcmw |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01370nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108954365</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20210112001407.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">200623s2020||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108954365</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Warnock, Rachel C. M.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding the tripartite approach to Bayesian divergence time estimation</subfield><subfield code="c">Rachel C.M. Warnock, April M. Wright</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (39 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge elements. Elements of paleontology</subfield><subfield code="x">2517-780X</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Placing evolutionary events in the context of geological time is a fundamental goal in paleobiology and macroevolution. In this Element we describe the tripartite model used for Bayesian estimation of time calibrated phylogenetic trees. The model can be readily separated into its component models: the substitution model, the clock model and the tree model. We provide an overview of the most widely used models for each component and highlight the advantages of implementing the tripartite model within a Bayesian framework.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wright, April M.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108949422</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108954365</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108954365 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:01Z |
institution | BVB |
isbn | 9781108954365 |
issn | 2517-780X |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (39 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements. Elements of paleontology |
spelling | Warnock, Rachel C. M. Understanding the tripartite approach to Bayesian divergence time estimation Rachel C.M. Warnock, April M. Wright Cambridge Cambridge University Press 2020 1 Online-Ressource (39 Seiten) txt c cr Cambridge elements. Elements of paleontology 2517-780X Placing evolutionary events in the context of geological time is a fundamental goal in paleobiology and macroevolution. In this Element we describe the tripartite model used for Bayesian estimation of time calibrated phylogenetic trees. The model can be readily separated into its component models: the substitution model, the clock model and the tree model. We provide an overview of the most widely used models for each component and highlight the advantages of implementing the tripartite model within a Bayesian framework. Wright, April M. Erscheint auch als Druck-Ausgabe 9781108949422 |
spellingShingle | Warnock, Rachel C. M. Understanding the tripartite approach to Bayesian divergence time estimation |
title | Understanding the tripartite approach to Bayesian divergence time estimation |
title_auth | Understanding the tripartite approach to Bayesian divergence time estimation |
title_exact_search | Understanding the tripartite approach to Bayesian divergence time estimation |
title_full | Understanding the tripartite approach to Bayesian divergence time estimation Rachel C.M. Warnock, April M. Wright |
title_fullStr | Understanding the tripartite approach to Bayesian divergence time estimation Rachel C.M. Warnock, April M. Wright |
title_full_unstemmed | Understanding the tripartite approach to Bayesian divergence time estimation Rachel C.M. Warnock, April M. Wright |
title_short | Understanding the tripartite approach to Bayesian divergence time estimation |
title_sort | understanding the tripartite approach to bayesian divergence time estimation |
work_keys_str_mv | AT warnockrachelcm understandingthetripartiteapproachtobayesiandivergencetimeestimation AT wrightaprilm understandingthetripartiteapproachtobayesiandivergencetimeestimation |