Statistics and data visualization in climate science with R and Python:
A comprehensive overview of essential statistical concepts, useful statistical methods, data visualization, and modern computing tools for the climate sciences and many others such as geography and environmental engineering. It is an invaluable reference for students and researchers in climatology a...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | eBook |
Language: | English |
Published: |
Cambridge ; New York
Cambridge University Press
2023
|
Links: | https://doi.org/10.1017/9781108903578 |
Summary: | A comprehensive overview of essential statistical concepts, useful statistical methods, data visualization, and modern computing tools for the climate sciences and many others such as geography and environmental engineering. It is an invaluable reference for students and researchers in climatology and its connected fields who wish to learn data science, statistics, R and Python programming. The examples and exercises in the book empower readers to work on real climate data from station observations, remote sensing and simulated results. For example, students can use R or Python code to read and plot the global warming data and the global precipitation data in netCDF, csv, txt, or JSON; and compute and interpret empirical orthogonal functions. The book's computer code and real-world data allow readers to fully utilize the modern computing technology and updated datasets. Online supplementary resources include R code and Python code, data files, figure files, tutorials, slides and sample syllabi. |
Physical Description: | 1 Online-Ressource (xxii, 391 Seiten) |
ISBN: | 9781108903578 |
Staff View
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108903578 | ||
003 | UkCbUP | ||
005 | 20231117085053.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 200220s2023||||enk o ||1 0|eng|d | ||
020 | |a 9781108903578 | ||
100 | 1 | |a Shen, Samuel S. | |
245 | 1 | 0 | |a Statistics and data visualization in climate science with R and Python |c Samuel S.P. Shen, Gerald R. North |
264 | 1 | |a Cambridge ; New York |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xxii, 391 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a A comprehensive overview of essential statistical concepts, useful statistical methods, data visualization, and modern computing tools for the climate sciences and many others such as geography and environmental engineering. It is an invaluable reference for students and researchers in climatology and its connected fields who wish to learn data science, statistics, R and Python programming. The examples and exercises in the book empower readers to work on real climate data from station observations, remote sensing and simulated results. For example, students can use R or Python code to read and plot the global warming data and the global precipitation data in netCDF, csv, txt, or JSON; and compute and interpret empirical orthogonal functions. The book's computer code and real-world data allow readers to fully utilize the modern computing technology and updated datasets. Online supplementary resources include R code and Python code, data files, figure files, tutorials, slides and sample syllabi. | ||
700 | 1 | |a North, Gerald R. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108829465 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108842570 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108903578 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108903578 |
---|---|
_version_ | 1827038445341507584 |
adam_text | |
any_adam_object | |
author | Shen, Samuel S. |
author2 | North, Gerald R. |
author2_role | |
author2_variant | g r n gr grn |
author_facet | Shen, Samuel S. North, Gerald R. |
author_role | |
author_sort | Shen, Samuel S. |
author_variant | s s s ss sss |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01849nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108903578</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20231117085053.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">200220s2023||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108903578</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Samuel S.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistics and data visualization in climate science with R and Python</subfield><subfield code="c">Samuel S.P. Shen, Gerald R. North</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxii, 391 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A comprehensive overview of essential statistical concepts, useful statistical methods, data visualization, and modern computing tools for the climate sciences and many others such as geography and environmental engineering. It is an invaluable reference for students and researchers in climatology and its connected fields who wish to learn data science, statistics, R and Python programming. The examples and exercises in the book empower readers to work on real climate data from station observations, remote sensing and simulated results. For example, students can use R or Python code to read and plot the global warming data and the global precipitation data in netCDF, csv, txt, or JSON; and compute and interpret empirical orthogonal functions. The book's computer code and real-world data allow readers to fully utilize the modern computing technology and updated datasets. Online supplementary resources include R code and Python code, data files, figure files, tutorials, slides and sample syllabi.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">North, Gerald R.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108829465</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108842570</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108903578</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108903578 |
illustrated | Not Illustrated |
indexdate | 2025-03-19T15:54:00Z |
institution | BVB |
isbn | 9781108903578 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxii, 391 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Shen, Samuel S. Statistics and data visualization in climate science with R and Python Samuel S.P. Shen, Gerald R. North Cambridge ; New York Cambridge University Press 2023 1 Online-Ressource (xxii, 391 Seiten) txt c cr A comprehensive overview of essential statistical concepts, useful statistical methods, data visualization, and modern computing tools for the climate sciences and many others such as geography and environmental engineering. It is an invaluable reference for students and researchers in climatology and its connected fields who wish to learn data science, statistics, R and Python programming. The examples and exercises in the book empower readers to work on real climate data from station observations, remote sensing and simulated results. For example, students can use R or Python code to read and plot the global warming data and the global precipitation data in netCDF, csv, txt, or JSON; and compute and interpret empirical orthogonal functions. The book's computer code and real-world data allow readers to fully utilize the modern computing technology and updated datasets. Online supplementary resources include R code and Python code, data files, figure files, tutorials, slides and sample syllabi. North, Gerald R. Erscheint auch als Druck-Ausgabe 9781108829465 Erscheint auch als Druck-Ausgabe 9781108842570 |
spellingShingle | Shen, Samuel S. Statistics and data visualization in climate science with R and Python |
title | Statistics and data visualization in climate science with R and Python |
title_auth | Statistics and data visualization in climate science with R and Python |
title_exact_search | Statistics and data visualization in climate science with R and Python |
title_full | Statistics and data visualization in climate science with R and Python Samuel S.P. Shen, Gerald R. North |
title_fullStr | Statistics and data visualization in climate science with R and Python Samuel S.P. Shen, Gerald R. North |
title_full_unstemmed | Statistics and data visualization in climate science with R and Python Samuel S.P. Shen, Gerald R. North |
title_short | Statistics and data visualization in climate science with R and Python |
title_sort | statistics and data visualization in climate science with r and python |
work_keys_str_mv | AT shensamuels statisticsanddatavisualizationinclimatesciencewithrandpython AT northgeraldr statisticsanddatavisualizationinclimatesciencewithrandpython |