Mathematical foundations of infinite-dimensional statistical models:
In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a cohe...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2016
|
Schriftenreihe: | Cambridge series on statistical and probabilistic mathematics
40 |
Links: | https://doi.org/10.1017/CBO9781107337862 |
Zusammenfassung: | In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. |
Umfang: | 1 Online-Ressource (xiv, 690 Seiten) |
ISBN: | 9781107337862 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781107337862 | ||
003 | UkCbUP | ||
005 | 20160210124449.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 130212s2016||||enk o ||1 0|eng|d | ||
020 | |a 9781107337862 | ||
100 | 1 | |a Giné, Evarist |d 1944- | |
245 | 1 | 0 | |a Mathematical foundations of infinite-dimensional statistical models |c Evarist Giné, Richard Nickl |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2016 | |
300 | |a 1 Online-Ressource (xiv, 690 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge series on statistical and probabilistic mathematics |v 40 | |
520 | |a In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. | ||
700 | 1 | |a Nickl, Richard |d 1980- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107043169 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9781107337862 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781107337862 |
---|---|
_version_ | 1825574048532267009 |
adam_text | |
any_adam_object | |
author | Giné, Evarist 1944- |
author2 | Nickl, Richard 1980- |
author2_role | |
author2_variant | r n rn |
author_facet | Giné, Evarist 1944- Nickl, Richard 1980- |
author_role | |
author_sort | Giné, Evarist 1944- |
author_variant | e g eg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01959nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781107337862</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20160210124449.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">130212s2016||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107337862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giné, Evarist</subfield><subfield code="d">1944-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical foundations of infinite-dimensional statistical models</subfield><subfield code="c">Evarist Giné, Richard Nickl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 690 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">40</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nickl, Richard</subfield><subfield code="d">1980-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107043169</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781107337862</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781107337862 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:02Z |
institution | BVB |
isbn | 9781107337862 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 690 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge series on statistical and probabilistic mathematics |
spelling | Giné, Evarist 1944- Mathematical foundations of infinite-dimensional statistical models Evarist Giné, Richard Nickl Cambridge Cambridge University Press 2016 1 Online-Ressource (xiv, 690 Seiten) txt c cr Cambridge series on statistical and probabilistic mathematics 40 In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Nickl, Richard 1980- Erscheint auch als Druck-Ausgabe 9781107043169 |
spellingShingle | Giné, Evarist 1944- Mathematical foundations of infinite-dimensional statistical models |
title | Mathematical foundations of infinite-dimensional statistical models |
title_auth | Mathematical foundations of infinite-dimensional statistical models |
title_exact_search | Mathematical foundations of infinite-dimensional statistical models |
title_full | Mathematical foundations of infinite-dimensional statistical models Evarist Giné, Richard Nickl |
title_fullStr | Mathematical foundations of infinite-dimensional statistical models Evarist Giné, Richard Nickl |
title_full_unstemmed | Mathematical foundations of infinite-dimensional statistical models Evarist Giné, Richard Nickl |
title_short | Mathematical foundations of infinite-dimensional statistical models |
title_sort | mathematical foundations of infinite dimensional statistical models |
work_keys_str_mv | AT gineevarist mathematicalfoundationsofinfinitedimensionalstatisticalmodels AT nicklrichard mathematicalfoundationsofinfinitedimensionalstatisticalmodels |