Privacy-preserving computing: for big data analytics and AI
Privacy-preserving computing aims to protect the personal information of users while capitalizing on the possibilities unlocked by big data. This practical introduction for students, researchers, and industry practitioners is the first cohesive and systematic presentation of the field's advance...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | E-Book |
Sprache: | Englisch Chinesisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2024
|
Links: | https://doi.org/10.1017/9781009299534 |
Zusammenfassung: | Privacy-preserving computing aims to protect the personal information of users while capitalizing on the possibilities unlocked by big data. This practical introduction for students, researchers, and industry practitioners is the first cohesive and systematic presentation of the field's advances over four decades. The book shows how to use privacy-preserving computing in real-world problems in data analytics and AI, and includes applications in statistics, database queries, and machine learning. The book begins by introducing cryptographic techniques such as secret sharing, homomorphic encryption, and oblivious transfer, and then broadens its focus to more widely applicable techniques such as differential privacy, trusted execution environment, and federated learning. The book ends with privacy-preserving computing in practice in areas like finance, online advertising, and healthcare, and finally offers a vision for the future of the field. |
Umfang: | 1 Online-Ressource (xii, 255 Seiten) |
ISBN: | 9781009299534 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781009299534 | ||
003 | UkCbUP | ||
005 | 20231105164536.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 220429s2024||||enk o ||1 0|eng|d | ||
020 | |a 9781009299534 | ||
041 | 1 | |a eng |h chi | |
100 | 1 | |a Chen, Kai |d 1977- | |
240 | 1 | 0 | |a Privacy-preserving computing. |l English |
245 | 1 | 0 | |a Privacy-preserving computing |b for big data analytics and AI |c Kai Chen, Qiang Yang |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2024 | |
300 | |a 1 Online-Ressource (xii, 255 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a Privacy-preserving computing aims to protect the personal information of users while capitalizing on the possibilities unlocked by big data. This practical introduction for students, researchers, and industry practitioners is the first cohesive and systematic presentation of the field's advances over four decades. The book shows how to use privacy-preserving computing in real-world problems in data analytics and AI, and includes applications in statistics, database queries, and machine learning. The book begins by introducing cryptographic techniques such as secret sharing, homomorphic encryption, and oblivious transfer, and then broadens its focus to more widely applicable techniques such as differential privacy, trusted execution environment, and federated learning. The book ends with privacy-preserving computing in practice in areas like finance, online advertising, and healthcare, and finally offers a vision for the future of the field. | ||
700 | 1 | |a Yang, Qiang |d 1961- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009299510 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781009299534 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781009299534 |
---|---|
_version_ | 1827038445348847616 |
adam_text | |
any_adam_object | |
author | Chen, Kai 1977- |
author2 | Yang, Qiang 1961- |
author2_role | |
author2_variant | q y qy |
author_facet | Chen, Kai 1977- Yang, Qiang 1961- |
author_role | |
author_sort | Chen, Kai 1977- |
author_variant | k c kc |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01776nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781009299534</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20231105164536.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">220429s2024||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009299534</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">chi</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Kai</subfield><subfield code="d">1977-</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Privacy-preserving computing.</subfield><subfield code="l">English</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Privacy-preserving computing</subfield><subfield code="b">for big data analytics and AI</subfield><subfield code="c">Kai Chen, Qiang Yang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 255 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Privacy-preserving computing aims to protect the personal information of users while capitalizing on the possibilities unlocked by big data. This practical introduction for students, researchers, and industry practitioners is the first cohesive and systematic presentation of the field's advances over four decades. The book shows how to use privacy-preserving computing in real-world problems in data analytics and AI, and includes applications in statistics, database queries, and machine learning. The book begins by introducing cryptographic techniques such as secret sharing, homomorphic encryption, and oblivious transfer, and then broadens its focus to more widely applicable techniques such as differential privacy, trusted execution environment, and federated learning. The book ends with privacy-preserving computing in practice in areas like finance, online advertising, and healthcare, and finally offers a vision for the future of the field.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qiang</subfield><subfield code="d">1961-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009299510</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781009299534</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781009299534 |
illustrated | Not Illustrated |
indexdate | 2025-03-19T15:54:00Z |
institution | BVB |
isbn | 9781009299534 |
language | English Chinese |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 255 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Chen, Kai 1977- Privacy-preserving computing. English Privacy-preserving computing for big data analytics and AI Kai Chen, Qiang Yang Cambridge Cambridge University Press 2024 1 Online-Ressource (xii, 255 Seiten) txt c cr Privacy-preserving computing aims to protect the personal information of users while capitalizing on the possibilities unlocked by big data. This practical introduction for students, researchers, and industry practitioners is the first cohesive and systematic presentation of the field's advances over four decades. The book shows how to use privacy-preserving computing in real-world problems in data analytics and AI, and includes applications in statistics, database queries, and machine learning. The book begins by introducing cryptographic techniques such as secret sharing, homomorphic encryption, and oblivious transfer, and then broadens its focus to more widely applicable techniques such as differential privacy, trusted execution environment, and federated learning. The book ends with privacy-preserving computing in practice in areas like finance, online advertising, and healthcare, and finally offers a vision for the future of the field. Yang, Qiang 1961- Erscheint auch als Druck-Ausgabe 9781009299510 |
spellingShingle | Chen, Kai 1977- Privacy-preserving computing for big data analytics and AI |
title | Privacy-preserving computing for big data analytics and AI |
title_alt | Privacy-preserving computing. |
title_auth | Privacy-preserving computing for big data analytics and AI |
title_exact_search | Privacy-preserving computing for big data analytics and AI |
title_full | Privacy-preserving computing for big data analytics and AI Kai Chen, Qiang Yang |
title_fullStr | Privacy-preserving computing for big data analytics and AI Kai Chen, Qiang Yang |
title_full_unstemmed | Privacy-preserving computing for big data analytics and AI Kai Chen, Qiang Yang |
title_short | Privacy-preserving computing |
title_sort | privacy preserving computing for big data analytics and ai |
title_sub | for big data analytics and AI |
work_keys_str_mv | AT chenkai privacypreservingcomputing AT yangqiang privacypreservingcomputing AT chenkai privacypreservingcomputingforbigdataanalyticsandai AT yangqiang privacypreservingcomputingforbigdataanalyticsandai |