Random matrix methods for machine learning:
This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA
Cambridge University Press
2022
|
Links: | https://doi.org/10.1017/9781009128490 |
Zusammenfassung: | This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website. |
Umfang: | 1 Online-Ressource (vi, 402 Seiten) |
ISBN: | 9781009128490 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781009128490 | ||
003 | UkCbUP | ||
005 | 20220704121753.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 210627s2022||||enk o ||1 0|eng|d | ||
020 | |a 9781009128490 | ||
100 | 1 | |a Couillet, Romain |d 1983- | |
245 | 1 | 0 | |a Random matrix methods for machine learning |c Romain Couillet, Grenoble Alpes University, Zhenyu Liao, Huazhong University of Science and Technology |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (vi, 402 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website. | ||
700 | 1 | |a Liao, Zhenyu |d 1992- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009123235 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781009128490 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781009128490 |
---|---|
_version_ | 1825574054611910657 |
adam_text | |
any_adam_object | |
author | Couillet, Romain 1983- |
author2 | Liao, Zhenyu 1992- |
author2_role | |
author2_variant | z l zl |
author_facet | Couillet, Romain 1983- Liao, Zhenyu 1992- |
author_role | |
author_sort | Couillet, Romain 1983- |
author_variant | r c rc |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01853nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781009128490</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20220704121753.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">210627s2022||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009128490</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Couillet, Romain</subfield><subfield code="d">1983-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random matrix methods for machine learning</subfield><subfield code="c">Romain Couillet, Grenoble Alpes University, Zhenyu Liao, Huazhong University of Science and Technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 402 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Zhenyu</subfield><subfield code="d">1992-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009123235</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781009128490</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781009128490 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:08Z |
institution | BVB |
isbn | 9781009128490 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (vi, 402 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Couillet, Romain 1983- Random matrix methods for machine learning Romain Couillet, Grenoble Alpes University, Zhenyu Liao, Huazhong University of Science and Technology Cambridge, United Kingdom ; New York, NY, USA Cambridge University Press 2022 1 Online-Ressource (vi, 402 Seiten) txt c cr This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website. Liao, Zhenyu 1992- Erscheint auch als Druck-Ausgabe 9781009123235 |
spellingShingle | Couillet, Romain 1983- Random matrix methods for machine learning |
title | Random matrix methods for machine learning |
title_auth | Random matrix methods for machine learning |
title_exact_search | Random matrix methods for machine learning |
title_full | Random matrix methods for machine learning Romain Couillet, Grenoble Alpes University, Zhenyu Liao, Huazhong University of Science and Technology |
title_fullStr | Random matrix methods for machine learning Romain Couillet, Grenoble Alpes University, Zhenyu Liao, Huazhong University of Science and Technology |
title_full_unstemmed | Random matrix methods for machine learning Romain Couillet, Grenoble Alpes University, Zhenyu Liao, Huazhong University of Science and Technology |
title_short | Random matrix methods for machine learning |
title_sort | random matrix methods for machine learning |
work_keys_str_mv | AT couilletromain randommatrixmethodsformachinelearning AT liaozhenyu randommatrixmethodsformachinelearning |